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Evolving Grid →
Real Cybersecurity 

Concerns



The Electric Grid is at an Inflection Point

• Decarbonization
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Source: IEA



• Decarbonization

• Electrification
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The Electric Grid is at an Inflection Point

Source: https://evadoption.com/



• Decarbonization

• Electrification

• Deteriorating 
resilience
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The Electric Grid is at an Inflection Point

Source: Department of Energy (DOE)



The Electric Grid is at an Inflection Point

• Decarbonization

• Electrification

• Deteriorating 
resilience

• Increasing remote 
automation
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Source: www.ncta.com



Evolving Attack Surface
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Grid Cybersecurity is a Real Threat Now
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Cyberthreats Discussed in this Talk

• MadIoT threat

• False-data injection attack (FDIA)

• Anomalous Topology Threat

11



Introduction to MadIoT Threat

12 Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power 
grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018.

Fig. Ackn. Brian Singer, ECE, CMU
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Introduction to MadIoT Threat
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Introduction to MadIoT Threat
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Fig. Ackn. Brian Singer, ECE, CMU

1. Compromise 
high-wattage IoT 
devices

2. Synchronously 
change load 
demand

3. Cascading Outage



Introduction to False Data Injection Attack

• False Data Injection Attack (FDIA) spoofs sensor data to cause 
grid malfunction
- Key idea: strategically spoof measurement data to bypass existing 

detection algorithms 

16 Liu, Yao, Peng Ning, and Michael K. Reiter. "False data injection attacks against state estimation in electric 
power grids." ACM Transactions on Information and System Security (TISSEC) 14, no. 1 (2011): 1-33.



Introduction to False Data Injection Attack
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Introduction to False Data Injection Attack
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State 
Estimation

Grid State

J-Valueif J-Value 
> 

Threshold:
Alarm

Strategically 
manipulate 
incoming 

measurement data

Strategy:
spoof measurements 

such that J-value does 
not increase 



Introduction to Anomalous Topology Threat

• In this threat, an attacker’s goal is to change the grid topology
- E.g., Toggle the circuit breaker for one of two parallel transmission lines

20



Modeling and Simulation 
Framework for Cyber-

Threat Evaluation



Status Quo in Threat Evaluation - MadIoT

22
(left) Soltan, Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power 
grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018.
(right) Huang, Bing, Alvaro A. Cardenas, and Ross Baldick. "Not everything is dark and gloomy: Power grid protections against 
IoT demand attacks." In 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1115-1132. 2019.



Status Quo in Threat Evaluation - MadIoT
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Widely varying perceptions on whether comprised IoT devices 
can cause cascading failure in the electric grid! 

(left) Soltan, Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power 
grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018.
(right) Huang, Bing, Alvaro A. Cardenas, and Ross Baldick. "Not everything is dark and gloomy: Power grid protections against
IoT demand attacks." In 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1115-1132. 2019.



Status Quo in Threat Evaluation - FDIA

• Grid operators and 
researchers1: 
- “We do not believe false 

data injection is a real threat 
to grid security”

- “Realistic grid settings must 
be considered to evaluate 
the efficacy of this attack”

24
Liu, Yao, Peng Ning, and Michael K. Reiter. "False data injection attacks against state estimation in electric power 
grids." ACM Transactions on Information and System Security (TISSEC) 14, no. 1 (2011): 1-33.
1. Paraphrased based on discussions with the U.S. grid operators and other researchers in the domain.



Status Quo: Challenges with Threat Evaluation

• Cyber threats are not studied on realistic grid setups 
- E.g., Did the MadIoT evaluation consider an N-1 secure grid setup?

25
B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar, 
“Shedding light on inconsistencies in grid cybersecurity: Disconnects and 
recommendations,” IEEE Security and Privacy, 2023. (To appear)

https://users.ece.cmu.edu/%7Elbauer/papers/cite.php?ref=grid:sp2023
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Status Quo: Challenges with Threat Evaluation

• Cyber threats are not studied on realistic grid setups  
- E.g., Did the MadIoT evaluation consider an N-1 secure grid setup?

• Threat space is not comprehensively explored
- E.g., Did it consider both hot weather and extreme winter scenarios?

• Simulation tools do not capture the true processes of the grid
- E.g., Did MadIoT evaluation consider droop, AGC control, and fast 

reserves?
- E.g., Did FDIA construction assume ACSE in control rooms?

27
B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar, 
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Status Quo: Challenges with Threat Evaluation

• Evaluation of cyber threats on unrealistic grid setups 

• Threat space is not comprehensively explored

• Simulation tools do not capture the true processes of the grid

28
B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar, 
“Shedding light on inconsistencies in grid cybersecurity: Disconnects and 
recommendations,” IEEE Security and Privacy, 2023. (To appear)

Lack of a single universal framework 
where all grid threats can be analyzed 

sufficiently accurately!

https://users.ece.cmu.edu/%7Elbauer/papers/cite.php?ref=grid:sp2023


Inspiration from NERC Standards?

• NERC standard TPL-001-41 tells system planners how to 
analyze future systems under a wide range of contingencies:

29

​”Establish Transmission system planning performance 
requirements within the planning horizon to develop a 
Bulk Electric System (BES) that will operate reliably over 
a broad spectrum of System conditions and following a 
wide range of probable Contingencies.”

1. "NERC Reliability Standards for the Bulk Electric Systems of North America, Standard TPL-001-4 -
Transmission System Planning Performance Requirements"



Inspiration from NERC Standards?

• NERC standard TPL-001-41 tells system planners how to 
analyze future systems under a wide range of contingencies:

• Would a similar methodology help with standardizing the 
evaluation of cyber threats?

30

​”Establish Transmission system planning performance 
requirements within the planning horizon to develop a 
Bulk Electric System (BES) that will operate reliably over 
a broad spectrum of System conditions and following a 
wide range of probable Contingencies.”

1. "NERC Reliability Standards for the Bulk Electric Systems of North America, Standard TPL-001-4 -
Transmission System Planning Performance Requirements"



Threat - Definition

31

Threat  =  {Goals, Capabilities}

Cause 
cascading 

grid outage

Control 80% 
of the total 
IoT devices, 

synchronously

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar, 
“Shedding light on inconsistencies in grid cybersecurity: Disconnects and 
recommendations,” IEEE Security and Privacy, 2023. (To appear)



Attack - Definition

32

Attack =  {Goals, Capabilities, Strategy}

Cause 
cascading 

grid outage

Control 80% 
of the total IoT 

devices, 
synchronously

Crank up the 
power of all 

IoT-controlled 
devices



Attack Scenario - Definition

33

Attack Scenario =  {Attack, Grid Topology}

Texas grid on 
a hot 

summer day!



A Methodology for Threat Evaluation
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A Methodology for Threat Evaluation

35

Define threat space 
for a given grid 
setting



A Methodology for Threat Evaluation

36

→ Consider realistic attack scenarios (e.g., N-1 secure)
→ Cover boundary attack scenarios



A Methodology for Threat Evaluation
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Use a simulator that mimics the 
real world sufficiently well



A Methodology for Threat Evaluation

38

Process outcomes 
to quantify impact 
and risk



MadIoT Example

39

MadIoT on 
the Texas 
Grid



MadIoT Example
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MadIoT on 
the Texas 
Grid →Grid Topology: <Hot 

summer, Extreme winter>
→Attack: Ramp up power 
for 0 → ~1M IoT devices



MadIoT Example
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MadIoT on 
the Syn. 
Texas Grid →Grid Topology: <Hot 

summer, Extreme winter>
→Attack: Ramp up power 
for 0 → ~1M IoT devices

Power flow + 
droop, AGC, 
and fast 
reserves



MadIoT Example
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MadIoT on 
the Syn. 
Texas Grid →Grid Topology: <Hot 

summer, Extreme winter>
→Attack: Ramp up power 
for 0 → ~1M IoT devices

Power flow + 
droop, AGC, 
and fast 
reserves

Grid 
Collapse?



MadIoT Example (cont.)

43

During the extreme winter scenario, 
model (syn. Texas network) predicts 
that synchronously turning on ~4% 
of the total load can cause a system 
failure.



FDIA Example

44

FDIA on the
South 
Carolina
Grid Setting 



FDIA Example
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FDIA on the
Syn. South 
Carolina
Grid 

→Grid Topology: <normal 
grid setting, noisy meas.>
→Attack: Spoof a subset of 
grid measurements with 
system knowledge K



FDIA Example
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FDIA on the
Syn. South 
Carolina
Grid 

→Grid Topology: <normal 
grid setting, noisy meas.>
→Attack: Spoof a subset of 
grid measurements with 
system knowledge K

AC State-
Estimation + 
Bad-data 
Detection

RSS

RSS: Residual 
sum of squares



FDIA Example (cont.)

• Ran 4 scenarios with varying system knowledge K
- Key takeaway: the efficacy of the attack is dependent of attacker’s 

knowledge of grid state

47

1 – No attack
2 – FDIA, (ideal) Attacker has perfect system knowledge
3 – FDIA, imperfect topology knowledge 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 50
4 – FDIA, imperfect network parameter knowledge 𝐾𝐾𝜎𝜎 = 0.02

→ 𝜏𝜏 is the critical value of Chi-square distribution
→With 𝑅𝑅𝑅𝑅𝑅𝑅 > 𝜏𝜏, bad-data detection raises an alarm

1
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RSS: Residual sum of squares 
(also called the J-value)



DYNWATCH: 
Physics-driven Data Mining 

Technique for Anomaly 
Detection 



Data Processing in High-voltage Grids

• Data processing 
in control rooms
- AC State-

Estimation 
(ACSE)

- Topology 
Estimation (TE)

49

Source: ISO-New England



Data Processing in High-voltage Grids

• Data processing 
in control rooms
- AC State-

Estimation 
(ACSE)

- Topology 
Estimation (TE)

• Fundamental in 
grid operation

50

Source: ISO-New England



Data Processing in High-voltage Grids

• Any anomalous 
data can 
significantly 
hamper grid 
operation

51

Source: ISO-New England



• Many known causes for anomalies in grid data

• Anomalous data must be identified and isolated for 
reliable operation

Anomalies in ACSE and TE

52



Status Quo for Anomaly Detection: Spatial Pattern 

• Setting: spatial features at a single time snapshot

53

Sensor readings over time
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×
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Physical 
damage
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Failure

Spatial pattern 
at time t



Status Quo for Anomaly Detection: Spatial Pattern 

• Setting: spatial features at a single time snapshot

• Measurement data is processed by ACSE and BDD 
units

54
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Status Quo for Anomaly Detection: Spatial Pattern 

• Setting: spatial features at a single time snapshot

• BDD may trigger an anomaly based on the J-value 
from ACSE

55
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Status Quo for Anomaly Detection: Spatial Pattern 

• Setting: spatial features at a single time snapshot

• Some anomalies are not detectable from analysis of 
spatial patterns alone

56

Sensor readings over time
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Status Quo for Anomaly Detection: Temporal Pattern

• Given sensor data over time, can we detect an anomalous data-
point?

• Time-series processing can detect anomalies that violate 
temporal statistical consistency (see t = 15)

57



Topology Changes → False Positives 

• Power grid topology changes frequently

58

t=1 t=6 t=11 t=15 
× × × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1



Topology Changes → False Positives 

• Power grid topology changes frequently

59

t=1 t=6 t=11 t=15 
× × × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1

Records from a real utility in the Eastern 
Interconnection (>17,000 lines)



Topology Changes → False Positives 

• Power grid topology changes frequently
- Classical approaches can result in false positives (FP)

60

t=1 t=6 t=11 t=15 
× ×× × ×

× × × × × × × × × anomaly

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1

due to normal topology change
Records from a real utility in the Eastern 

Interconnection (>17,000 lines)

FP



DYNWATCH: Temporal + Spatial-based Detection

• The proposed approach on time-series data mining considers 
the impact of topology change
- The algorithm has 3 steps

61

t=1 t=6 t=11 t=15 
× ×× × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1

S. Li, A. Pandey, B. Hooi, C. Faloutsos and L. Pileggi, "Dynamic Graph-Based Anomaly 
Detection in the Electrical Grid," in IEEE Transactions on Power Systems.



DYNWATCH: Temporal + Spatial-based Detection

• The proposed approach on time-series data mining considers 
the impact of topology change

62

t=1 t=6 t=11 t=15 
× ×× × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1
1) Define graph distance

small distance
large distance

S. Li, A. Pandey, B. Hooi, C. Faloutsos and L. Pileggi, "Dynamic Graph-Based Anomaly 
Detection in the Electrical Grid," in IEEE Transactions on Power Systems.



DYNWATCH: Temporal + Spatial-based Detection

• The proposed approach on time-series data mining considers 
the impact of topology change

63

t=1 t=6 t=11 t=15 
× ×× × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1
1) Define graph distance
2) Temporal weighting

small distance
large distance

S. Li, A. Pandey, B. Hooi, C. Faloutsos and L. Pileggi, "Dynamic Graph-Based Anomaly 
Detection in the Electrical Grid," in IEEE Transactions on Power Systems.
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DYNWATCH: Temporal + Spatial-based Detection

• The proposed approach on time-series data mining considers 
the impact of topology change

64

t=1 t=6 t=11 t=15 
× ×× × ×

× × × × × × × × ×

sensor
readings

×

𝓖𝓖2 𝓖𝓖3𝓖𝓖1
1) Define graph distance
2) Temporal weighting
3) Anomaly detection

small distance
large distance

𝑤𝑤1 𝑤𝑤2 … … … … … … … … … … … 𝑤𝑤13 𝑤𝑤14
S. Li, A. Pandey, B. Hooi, C. Faloutsos and L. Pileggi, "Dynamic Graph-Based Anomaly 
Detection in the Electrical Grid," in IEEE Transactions on Power Systems.

𝓝𝓝𝑡𝑡=15

anomaly



Domain-informed Graph Distance

• The difference between two graphs can be seen as different line 
outages on the union graph 

• Impact of line outage is quantified by line outage distribution 
factor (LODF)

• Graph distance is the sum of line outage impacts

65

𝑝𝑝
𝑞𝑞 𝓖𝓖𝑗𝑗

𝓖𝓖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝓖𝓖𝑖𝑖



Temporal Weighting by Bias-variance Trade-off

• Weigh the past sensor data using a bias-variance trade-off
- Bias: data from very different topology will increase bias
- Variance: only using data from the most similar topology will increase 

variance

66

min
𝑤𝑤

�
𝑡𝑡

𝑤𝑤𝑡𝑡𝑑𝑑𝑡𝑡 +
𝑐𝑐
2
𝑤𝑤𝑇𝑇𝑤𝑤

s.t.
𝑤𝑤𝑡𝑡 ≥ 0,∀𝑡𝑡;

�
𝑡𝑡

𝑤𝑤𝑡𝑡 = 1,



Anomaly Score - Idea

• Learn a distribution of normal behavior while ignoring previous 
anomalous data
- Median and IQR are more robust statistics

67



Anomaly Score - Construction

• Anomaly score measures the deviation from distribution center

68

For sensor 𝑠𝑠 at time 𝑡𝑡:

𝑎𝑎𝑠𝑠 𝑡𝑡 =
𝑥𝑥 𝑡𝑡 − 𝜇𝜇(𝑡𝑡)
𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡)

Final score for time 𝑡𝑡:

𝐴𝐴 𝑡𝑡 = max
s

𝑎𝑎𝑠𝑠(𝑡𝑡)

𝜇𝜇(t) = Weighted Median; 𝐼𝐼𝐼𝐼𝐼𝐼(t) = Weighted IQR



DYNWATCH has Lower False Positives

• False data injection 
attack (FDIA) is a 
coordinated attack on 
grid measurements 

• With a constructed FDIA 
attack, only DYNWATCH 
is shown to detect all 
anomalies without False 
Positives (FP)

69



High Performance with Scalability

• DYNWATCH outperforms other classical approaches based on 
AUC and F-measure

70

The proposed method scales (almost) 
linearly with grid size.



Warm Starter for 
Cyberthreats-based 

Contingencies



Intro: Contingency Analysis

• Contingency analysis (CA) is pivotal for grid reliability
- Evaluates N-1 security: Loss of any 1 device should not cause 

grid failure 
- Make necessary adjustments if the grid fails N-1 security

72



Intro: Contingency Analysis

• Contingency analysis (CA) is pivotal for grid reliability
- Evaluates N-1 security: Loss of any 1 device should not cause 

grid failure
- Make necessary adjustments if the grid fails N-1 security

• CA Requirement: A tool that can solve 10k+ power 
flow networks within minutes robustly
- Current tools utilize the pre-contingency solution as the 

initial condition due to the vicinity to the final solution

73



Moving beyond N-1 security for Cyber Resiliency

• Many cyberthreats (MadIoT, substation takeover, etc.) 
represent N-x events
- Necessitates that we move beyond N-1 to N-x security
- Current methods for CA may not work

74



Moving beyond N-1 security for Cyber Resiliency

• Many cyberthreats (MadIoT, substation takeover, etc.) 
represent N-x events
- Necessitates that we move beyond N-1 to N-x security
- Current methods for CA may not work

75

CA Requirement for cyberthreats: Robust and fast 
power flow method for evaluating N-x events



A Novel Warm Starter Method

• Unlike N-1 contingency evaluation, the N-x contingency solution 
is not close to the pre-contingency solution

• Tradeoff between robustness and speed
- Physics-based tools can be made robust but are slow
- Pure data-driven methods can be fast but may lack robustness

76 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics-
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022).



A Novel Warm Starter Method

• Unlike N-1 contingency evaluation, the N-x contingency solution 
is not close to the pre-contingency solution

• Tradeoff between robustness and speed

• A warm starter can combine the benefits of both physics-based 
and data-driven methods

77 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics-
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022).

Use ML to learn good initial conditions for N-x 
events and feed them into the physics-based 

solver for fast convergence!



Graph-based Warm Starter Model

• Power grid is an interconnected graph
- Voltages at a node are a function of 

neighboring node voltages

78 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics-
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022).



Graph-based Warm Starter Model

• Power grid is an interconnected graph

• The joint distribution of post-
contingency voltages
conditioned on contingency & 
system information can be 
described via a pairwise Markov
Random Field (cMRF) model:

79 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics-
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022).

𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 =
1

𝑍𝑍(𝜽𝜽,𝒙𝒙)�
𝑖𝑖=1

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒊𝒊) �
𝑠𝑠,𝑡𝑡 ∈𝑬𝑬

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕)



Conditional Gaussian Random Field (cGRF) Model

• Assume the cMRF model to be Gaussian (cGRF)

80

𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 =
1

𝑍𝑍(𝜽𝜽,𝒙𝒙)�
𝑖𝑖=1

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒊𝒊) �
𝑠𝑠,𝑡𝑡 ∈𝑬𝑬

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕)

if 𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 is Gaussian then:

𝜓𝜓𝑖𝑖 𝒚𝒚𝒊𝒊 = 𝑒𝑒𝑒𝑒𝑒𝑒 −
1
2𝒚𝒚𝒊𝒊

𝑻𝑻𝚲𝚲𝐢𝐢 𝐲𝐲𝐢𝐢+ 𝜼𝜼𝒊𝒊𝑻𝑻𝒚𝒚𝒊𝒊

𝜓𝜓𝑖𝑖 𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕 = 𝑒𝑒𝑒𝑒𝑒𝑒(−
1
2𝒚𝒚𝒔𝒔

𝑻𝑻𝚲𝚲𝐬𝐬𝐬𝐬𝐲𝐲𝒕𝒕)



Conditional Gaussian Random Field (cGRF) Model

• Assume the cMRF model to be Gaussian (cGRF)
- Use local neural nets to model parameters in Λ and 𝜂𝜂
- Apply domain knowledge to choose the feature space
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𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 =
1

𝑍𝑍(𝜽𝜽,𝒙𝒙)�
𝑖𝑖=1

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒊𝒊) �
𝑠𝑠,𝑡𝑡 ∈𝑬𝑬

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕)

if 𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 is Gaussian then:

𝜓𝜓𝑖𝑖 𝒚𝒚𝒊𝒊 = 𝑒𝑒𝑒𝑒𝑒𝑒 −
1
2𝒚𝒚𝒊𝒊

𝑻𝑻𝚲𝚲𝐢𝐢 𝐲𝐲𝐢𝐢+ 𝜼𝜼𝒊𝒊𝑻𝑻𝒚𝒚𝒊𝒊

𝜓𝜓𝑖𝑖 𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕 = 𝑒𝑒𝑒𝑒𝑒𝑒(−
1
2𝒚𝒚𝒔𝒔

𝑻𝑻𝚲𝚲𝐬𝐬𝐬𝐬𝐲𝐲𝒕𝒕)



Conditional Gaussian Random Field (cGRF) Model

• Assume the cMRF model to be Gaussian (cGRF)
- Use local neural nets to model parameters in Λ and 𝜂𝜂
- Apply domain knowledge to choose the feature space

82

𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 =
1

𝑍𝑍(𝜽𝜽,𝒙𝒙)�
𝑖𝑖=1

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒊𝒊) �
𝑠𝑠,𝑡𝑡 ∈𝑬𝑬

𝑛𝑛

𝜓𝜓𝑖𝑖(𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕)

if 𝑃𝑃 𝑦𝑦 𝑥𝑥,𝜃𝜃 is Gaussian then:

𝜓𝜓𝑖𝑖 𝒚𝒚𝒊𝒊 = 𝑒𝑒𝑒𝑒𝑒𝑒 −
1
2𝒚𝒚𝒊𝒊

𝑻𝑻𝚲𝚲𝐢𝐢 𝐲𝐲𝐢𝐢+ 𝜼𝜼𝒊𝒊𝑻𝑻𝒚𝒚𝒊𝒊

𝜓𝜓𝑖𝑖 𝒚𝒚𝒔𝒔,𝒚𝒚𝒕𝒕 = 𝑒𝑒𝑒𝑒𝑒𝑒(−
1
2𝒚𝒚𝒔𝒔

𝑻𝑻𝚲𝚲𝐬𝐬𝐬𝐬𝐲𝐲𝒕𝒕)

min
𝜃𝜃

−�
𝑗𝑗=1

𝑁𝑁

𝑙𝑙 𝜃𝜃 𝑗𝑗

where:

𝑙𝑙 𝜃𝜃 𝑗𝑗 = 𝑃𝑃 𝑦𝑦𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝜃𝜃𝑗𝑗



cGRF Model Inference

• With a trained model parameters �𝜃𝜃𝑥𝑥 = [ �𝜃𝜃Λ, �𝜃𝜃𝜂𝜂], given 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, �𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
can be inferred:

83

�Λ = 𝑓𝑓Λ 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, �𝜃𝜃Λ

𝜂̂𝜂 = 𝑓𝑓𝜂𝜂 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, �𝜃𝜃𝜂𝜂
�Λ �𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜂̂𝜂



Physical Interpretability

• The proposed warm starter provides a linear proxy for grid 
operation post-contingency

• The linear proxy (Λ, 𝜂𝜂) is structurally similar to post-contingency 
admittance matrix at solution 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽
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Including Domain Knowledge

• Developed three variants of graphical model-based warm 
starter: cGRF, cGRF-PS, cGRF-ZI

85

Domain 
Knowledge cGRF cGRF-PS cGRF-ZI

Graphical Nature 
of the Grid Y Y Y

Parameter 
Sharing N Y Y

Zero Injection 
Nodes N N Y



Results: Proposed Warm starter (cGRF)
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On average, we 
observe a 5x speed 
improvement over 
traditional initialization 
methods 



Conclusions

• Research goal: Develop analytical tools for grid cybersecurity
- Special focus on combining data-driven and physics-based techniques

• Very interested in collaborations to maximize the impact
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