: Data-assisted Physics-based
Carnegie . . .
Mellon Modeling and Simulation for
University Grid Cybersecurity

Electrical &
Computer
Eﬂg| nee r'| ﬂg amritanshu.pandey@uvm.edu

AUGUST 16TH. 2022

Amritanshu Pandey




My Journey

* Academic Experience

- Special Faculty at Carnegie Mellon - 2020-2022
- Incoming Asst. Professor at the University of Vermont - 2023-

* Industry Experience

QD

Pearl Street

TECHNOLOGIES

Analyzing critical systems in

Summer 2013 nuclear stations research

ISO-NE

Commercializing PhD

2012-mid 2015 2019-2020
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Evolving Grid -
Real Cybersecurity
Concerns



The Electric Grid is at an Inflection Point

e Decarbonization

United States
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Source: IEA

> Carnegie Mellon University



The Electric Grid is at an Inflection Point

e Decarbonization

California - * Electrification

60%

50%

40%

30%.

% EV of total new sales

G — N N N 28]
o o o o o o
N N N (@ (@ N

Source: https://evadoption.com/
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The Electric Grid is at an Inflection Point

e Decarbonization

United States . ;
* Electrification

400

* Deteriorating
resilience

300 |

200 r

100 r
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—
o

# Reported electrical disturbances
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o o —
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(@ N N oN

202

Source: Department of Energy (DOE)
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The Electric Grid is at an Inflection Point

Billions of devices

50

40

I Number of connected devices 501 Billion @ |

42.1 Billion N

T ¢ T T T T T T T T T T T T T T T T T T T T T LN S S S S R B

Source: www.ncta.com

Decarbonization
Electrification

Deteriorating
resilience

Increasing remote
automation

Carnegie Mellon University



Evolving Attack Surface

y Attacker

Distribution r=====: Communication

mm— Transmission

Generation Transmission Distribution Operation . . )
9 Carnegie Mellon University



Grid Cybersecurity is a Real Threat Now

WRIR}D

Inside the Cunning, Unprecedented Hack of Ukraine's
Power Grid

The hack on Ukraine's power grid was a first-of-its-kind attack that sets an ominous precedent for the security of power

grids everywhere.

Vulnerable U.S. electric grid facing threats from
Russia and domestic terrorists

10 Carnegie Mellon University



Cyberthreats Discussed in this Talk

* MadIoT threat
* False-data injection attack (FDIA)

* Anomalous Topology Threat

11 Carnegie Mellon University



Introduction to MadIoT Threat

Operations

i
i

/’ I S
i

Generation Transmission Distribution

s Power Line
= = = Communication

Fig. Ackn. Bri i ECE, CM
12 Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power 9. Ac n rian Singer, C ¢ 'U
grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018. Carnegie Mellon University



Introduction to MadIoT Threat

1. Compromise

. high-wattage IoT Attacker
Operations devices

Generation Transmission Distribution
s Power Line

= = = Communication

Fig. Ackn. Bri i ECE, CM
13 Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power 9. Ac n rian Singer, C ¢ 'U
grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018. Carnegie Mellon University



Introduction to MadIoT Threat

1. Compromise

: high-wattage IoT Attacker
Operations devices

Generation Transmission Distribution
s Power Line 2. Synchronously
= = = Communication change load

demand

Fig. Ackn. Brian Singer, ECE, CMU
14 Carnegie Mellon University



Introduction to MadIoT Threat

1. Compromise

: high-wattage IoT Attacker
Operations devices

3. Cascading Outage ,/

Generation Transmission Distribution
s Power Line 2. Synchronously
= = = Communication change load

demand

Fig. Ackn. Brian Singer, ECE, CMU
15 Carnegie Mellon University



Introduction to False Data Injection Attack

* False Data Injection Attack (FDIA) spoofs sensor data to cause
grid malfunction

- Key idea: strategically spoof measurement data to bypass existing
detection algorithms

Operations

|
|

/’ 1 b
|

Generation Transmission Distribution

s Power Line
= = = Communication

16 Liu, Yao, Peng Ning, and Michael K. Reiter. "False data injection attacks against state estimation in electric " g i
power grids." ACM Transactions on Information and System Security (TISSEC) 14, no. 1 (2011): 1-33. Cal‘llegle Mellon UanGI'Slty



Introduction to False Data Injection Attack

Grid Stateq\ State
Estimation

if -Value g 77 V2IUS 1
>

Operations

Threshold:
Alarm L’

4

Generation Transmission Distribution

s Power Line

= = = (Communication
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Introduction to False Data Injection Attack

Grid Stateq\ State
Estimation

o

if -Value g 77 V2IUS 1
>

Operations

Threshold:
Alarm L’

4

Generation Transmission Distribution

s Power Line

= = = (Communication
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Introduction to False Data Injection Attack

Grid State o  Siate

Estimation
if -Value g 77 V2IUS 1 |
> S _ Strategically
SpOOf n:;aatfl,?r}/e.ments Operations manipulate
Threshola: such that J-value does , - N measlgfgnn:é?w?: data
. ’ [ N
Alarm not increase , : N
1

Generation Transmission Distribution

s Power Line

= = = (Communication

19 Carnegie Mellon University



Introduction to Anomalous Topology Threat

* In this threat, an attacker’s goal is to change the grid topology
- E.g., Toggle the circuit breaker for one of two parallel transmission lines

91\N G : G l g4f
t=1 t|=6 t=11 t=15

sensor
readings |
I anomaly

due to normal topology change

20 Carnegie Mellon University



Modeling and Simulation
Framework for Cyber-
Threat Evaluation



Status Quo in Threat Evaluation - MadIoT

BlacklIoT: IoT Botnet of High Wattage Devices Can Disrupt the Power Grid

Saleh Soltan
Department of Electrical Engineering
Princeton University
ssoltan @ princeton.edu

Prateek Mittal
Department of Electrical Engineering
Princeton University
pmittal @ princeton.edu

H. Vincent Poor
Department of Electrical Engineering
Princeton University
poor@princeton.edu

Abstract

‘We demonstrate that an Internet of Things (IoT) bot-
net of high warttage devices—such as air conditioners and
heaters—gives a unique ability to adversaries to launch
large-scale coordinated attacks on the power grid. In
particular, we reveal a new class of potential attacks on
power grids called the Manipulation of demand via Il
(MadloT) attacks that can leverage such a boinet in order
to manipulate the power demand in the grid. We study
five variations of the MadloT attacks and evaluate their
effectiveness via state-of-the-art simulators on real-world
power grid models. These simulation results demonstrate
that the MadloT attacks can result in local power outages
and in the worst cases, large-scale blackouts, Moreover,

S VG N WS SO OO S SO

High Wartage
—
loT Devices

Target of
~_ the Attack
_/

Adversary IaT Nevices

Not Everything is Dark and Gloomy:
Power Grid Protections Against [oT Demand Attacks

Bing Huang
The University of Texas at Austin
binghuang @utexas.edu

Alvaro A. Cardenas
University of California, Santa Cruz
alvaro.cardenas@ucsc.edu

Ross Baldick
The University of Texas at Austin
baldick@ece.utexas.edu

Abstract

Devices with high energy consumption such as air condi-
tioners, water heaters, and electric vehicles are increasingly
becoming Internet-connected. This new connectivity exposes
the control of new electric loads to attackers in what is known
as Manipulation of demand via IoT (MadIoT) attacks. In this
paper we investigate the impact of MadIoT attacks on power
transmission grids. Our analysis leverages a novel cascading
outage analysis tool that focuses on how the protection equip-
ment in the power grid as well as how protection algorithms
react to cascading events that can lead to a power blackout.
In particular, we apply our tool to a large North American
reoinnal transmiscion interconnection svstem consistine of

work proposed a novel form of attack called Manipulation
of demand via IoT (MadloT) [47], and showed that if an at-
tacker compromised hundreds of thousands of high-energy
[oT devices (such as water heaters and air conditioners), the
attacker could cause various problems to the power grid, in-
cluding (i) frequency instabilities, (ii) line failures, and (iii)
increased operating costs. These attacks paint a dire picture
of the security of the power grid as they show that a 30% in-
crease in demand can trip all the generators in the US Western
interconnection causing a complete system blackout, and a
1% increase of demand in the Polish grid results in a cascade
of 263 transmission line failures, affecting 86% of the load in
the system.

(left) Soltan, Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power

22 grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018. i £ 3
(right) Huang, Bing, Alvaro A. Cardenas, and Ross Baldick. "Not everything is dark and gloomy: Power grid protections against Carnegle Mell()n Umver51ty
IoT demand attacks." In 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1115-1132. 2019.



Status Quo in Threat Evaluation - MadIoT

BlacklIoT: IoT Botnet of High Wattage Devices Can Disrupt the Power Grid
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Abstract

‘We demonstrate that an Internet of Things (IoT) bot-
net of high warttage devices—such as air conditioners and
heaters—gives a unique ability to adversaries to launch
large-scale coordinated attacks on the power grid. In
particular, we reveal a new class of potential attacks on
power grids called the Manipulation of demand via Il
(MadloT) attacks that can leverage such a boinet in order
to manipulate the power demand in the grid. We study
five variations of the MadloT attacks and evaluate their
effectiveness via state-of-the-art simulators on real-world
power grid models. These simulation results demonstrate
that the MadloT attacks can result in local power outages
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Abstract

Devices with high energy consumption such as air condi-
tioners, water heaters, and electric vehicles are increasingly
becoming Internet-connected. This new connectivity exposes
the control of new electric loads to attackers in what is known
as Manipulation of demand via IoT (MadIoT) attacks. In this
paper we investigate the impact of MadIoT attacks on power
transmission grids. Our analysis leverages a novel cascading
outage analysis tool that focuses on how the protection equip-
ment in the power grid as well as how protection algorithms
react to cascading events that can lead to a power blackout.
In particular, we apply our tool to a large North American

work proposed a novel form of attack called Manipulation
of demand via IoT (MadloT) [47], and showed that if an at-
tacker compromised hundreds of thousands of high-energy
0T devices (such as water heaters and air conditioners), the
attacker could cause various problems to the power grid, in-
cluding (i) frequency instabilities, (ii) line failures, and (iii)
increased operating costs. These attacks paint a dire picture
of the security of the power grid as they show that a 30% in-
crease in demand can trip all the generators in the US Western
interconnection causing a complete system blackout, and a
1% increase of demand in the Polish grid results in a cascade
of 263 transmission line failures, affecting 86% of the load in
the system.

and in the worst cases, large-scale blackouts. Moreover,

T S P R O R Adversary 1aT Nevices recional transmission infereonnection svstem eonsistine of

Widely varying perceptions on whether comprised IoT devices
can cause cascading failure in the electric grid!

(left) Soltan, Saleh, Prateek Mittal, and H. Vincent Poor. "BlackIoT: IoT botnet of high wattage devices can disrupt the power

23 grid." In 27th {USENIX} Security Symposium ({USENIX} Security 18), pp. 15-32. 2018. i £ 3
(right) Huang, Bing, Alvaro A. Cardenas, and Ross Baldick. "Not everything is dark and gloomy: Power grid protections against Carnegle Mell()n Umversﬁy
IoT demand attacks." In 28th {USENIX} Security Symposium ({USENIX} Security 19), pp. 1115-1132. 2019.



Status Quo in Threat Evaluation - FDIA

* Grid operators and

False Data Injection Attacks against State researchers!:

Estimation in Electric Power Grids _ “We do not believe false

Department of Computer Science Department of Computer Science d a ta i nj eCti O n iS a rea | th reat

North Carolina State University University of North Carolina, Chapel Hill

Emails: {yliu20, pning}@ncsu.edu Email: reiter@cs.unc.edu to g ri d SeC u ri ty n”

At pover it compes e oo - “Realistic grid settings must
Qistribation networks across 8 large ggeopgraphical area. System b e C O n S I d e red to ev a I u a te
the efficacy of this attack”

monitoring is necessary to ensure the reliable operation of power
grids, and state estimation is used in system monitoring to best
estimate the power grid state through analysis of meter measure-
ments and power system models. Various techniques have been
developed to detect and identify bad measurements, including
the interacting bad measurements introduced by arbitrary, non-
random causes. At first glance, it seems that these techniques can
also defeat malicious measurements injected by attackers, simce /& =\ J& (&
such malicious measurements can be considered as interacting istributi Distribution
bad measurements. Distribution B supssions

In this paper, we present a new class of attacks, called false data - \ """""
injection attacks, against state estimation in electric power grids. Customers
‘We show that an attacker can take advantage of the configuration
of a power system to launch such attacks to successfully bypass
the existing techniques for bad measurement detection. Moreover,
we look at two realistic attack scenarios, in which the attacker
is either constrained to some specific meters (due to the physical
protection of the meters), or limited in the resources required to
comnromice meterc. We chaw that the attacker can svstematically

Trar

Fig. 1. A power grid connecting power plants to customers via power
transmission and distribution networks (revised from [2])

Liu, Yao, Peng Ning, and Michael K. Reiter. "False data injection attacks against state estimation in electric power
24 grids." ACM Transactions on Information and System Security (TISSEC) 14, no. 1 (2011): 1-33.

1. Paraphrased based on discussions with the U.S. grid operators and other researchers in the domain. Carnegle MCHOI] UIllVCI'Slty



Status Quo: Challenges with Threat Evaluation

* Cyber threats are not studied on realistic grid setups
- E.qg., Did the MadloT evaluation consider an N-1 secure grid setup?

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar,
’) “Shedding light on inconsistencies in grid cybersecurity: Disconnects and g . .
5 recommendations,” IEEE Security and Privacy, 2023. (To appear) Carnegie Mellon University


https://users.ece.cmu.edu/%7Elbauer/papers/cite.php?ref=grid:sp2023

Status Quo: Challenges with Threat Evaluation

* Cyber threats are not studied on realistic grid setups
- E.qg., Did the MadloT evaluation consider an N-1 secure grid setup?

* Threat space is not comprehensively explored
- E.qg., Did it consider both hot weather and extreme winter scenarios?

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar,
26 “Shedding light on inconsistencies in grid cybersecurity: Disconnects and g . o
recommendations,” IEEE Security and Privacy, 2023. (To appear) Carnegie Mellon University
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Status Quo: Challenges with Threat Evaluation

* Cyber threats are not studied on realistic grid setups
- E.qg., Did the MadloT evaluation consider an N-1 secure grid setup?

* Threat space is not comprehensively explored
- E.qg., Did it consider both hot weather and extreme winter scenarios?

* Simulation tools do not capture the true processes of the grid
- E.g., Did MadlIoT evaluation consider droop, AGC control, and fast
reserves?
- E.qg., Did FDIA construction assume ACSE in control rooms?

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar,
27 “Shedding light on inconsistencies in grid cybersecurity: Disconnects and g . o
recommendations,” IEEE Security and Privacy, 2023. (To appear) Carnegie Mellon University


https://users.ece.cmu.edu/%7Elbauer/papers/cite.php?ref=grid:sp2023

Status Quo: Challenges with Threat Evaluation

* Evaluation of cyber threats on unrealistic grid setups
* Threat space is not comprehensively explored

* Simulation tools do not capture the true processes of the grid

[ Lack of a single universal framework A
where all grid threats can be analyzed
sufficiently accurately!

%

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar,
28 “Shedding light on inconsistencies in grid cybersecurity: Disconnects and g . o
recommendations,” IEEE Security and Privacy, 2023. (To appear) Carnegle Mellon Unlvel‘SIty


https://users.ece.cmu.edu/%7Elbauer/papers/cite.php?ref=grid:sp2023

Inspiration from NERC Standards?

29

NERC standard TPL-001-41! tells system planners how to
analyze future systems under a wide range of contingencies:

ﬁEstainsh Transmission system planning performance N
requirements within the planning horizon to develop a
Bulk Electric System (BES) that will operate reliably over
a broad spectrum of System conditions and following a
wide range of probable Contingencies.”

o

/

1. "NERC Reliability Standards for the Bulk Electric Systems of North America, Standard TPL-001-4 - " 5 3
Transmission System Planning Performance Requirements" Carnegle Mellon UI‘]JVGI‘Slty



Inspiration from NERC Standards?

* NERC standard TPL-001-41 tells system planners how to
analyze future systems under a wide range of contingencies:

ﬁEstainsh Transmission system planning performance N
requirements within the planning horizon to develop a
Bulk Electric System (BES) that will operate reliably over
a broad spectrum of System conditions and following a
wide range of probable Contingencies.” Yy

o

* Would a similar methodology help with standardizing the
evaluation of cyber threats?

30 1. "NERC Reliability Standards for the Bulk Electric Systems of North America, Standard TPL-001-4 - " 5 3
Transmission System Planning Performance Requirements" Carnegle Mellon UanGI‘Slty



Threat - Definition

Threat = {Goals, Capabilities}
| |

Cause - Control 80%
cascading of the total

grid outage IoT devices,
| - synchronously

B. Singer, A. Pandey, S. Li, L. Bauer, C. Miller, L. Pileggi, and V. Sekar,
31 “Shedding light on inconsistencies in grid cybersecurity: Disconnects and

recommendations,” IEEE Security and Privacy, 2023. (To appear) Carnegle Mellon UnlverSIty



Attack - Definition

Attack = {Goals, Capabilities, Strategy}
! l

Control 80% || Crank up the

Cause
cascading of the total IoT power of all
grid outage devices, IoT-controlled
synchronously | devices

32 Carnegie Mellon University




Attack Scenario - Definition

Attack Scenario = {Attack, Grid Topology}

!

Texas grid on
a hot
summer day!

33 Carnegie Mellon University



A Methodology for Threat Evaluation

34

Threat

Attack Scenarios for Threat

Grid
Topology

Attack

o —>

Simulator

—P Outcomes

Carnegie Mellon University



A Methodology for Threat Evaluation

Attack Scenarios for Threat

| |
Grid
Topology °
Threat =P .' —Pp Simulator =P Outcomes
l Attack

Define threat space
for a given grid
setting

35 Carnegie Mellon University



A Methodology for Threat Evaluation

Attack Scenarios for Threat

Grid
Topology °
Threat ~P» o° —P Simulator =P Outcomes

Attack

|

— Consider realistic attack scenarios (e.g., N-1 secure)
— Cover boundary attack scenarios

36 Carnegie Mellon University



A Methodology for Threat Evaluation

37

Threat

Attack Scenarios for Threat

Grid
Topolo

gy

Attack

oL —P

Simulator

P Outcomes

|

Use a simulator that mimics the
real world sufficiently well

Carnegie Mellon University



A Methodology for Threat Evaluation

Threat

38

Attack Scenarios for Threat

Grid
Topology

Attack

o —>

Simulator = Outcomes

|

Process outcomes
to quantify impact
and risk

Carnegie Mellon University



MadIoT Example

Threat

—>

|

Grid
Topology

Attack

MadIoT on

the Texas

- Grid

39

Simulator

Carnegie Mellon University



MadIoT Example

Grid
Topology °
Threat = o —P Simulator F—p»
Attack |
| | It

‘MadlIoT on i

the Texas

- Grid ' >Grid Topology: <Hot

summer, Extreme winter>

—Attack: Ramp up power

| for 0 » ~1M IoT devices
40 Carnegie Mellon University



MadIoT Example

I |
Grid
Topology °
Threat P o° —¥P Simulator —P»

1 Attack l |
MadIoT on 1 Power flow +
the Syn. droop, AGC,

‘Texas Grid | —Grid Topology: <Hot and fast
summer, Extreme winter> | | reserves

41

—Attack: Ramp up power
| for 0 » ~1M IoT devices

Carnegie Mellon University



MadIoT Example

| |
Grid
LTopology $ ol  Grid
Threat P o0 —P» Simulator —P» Collapse?
1 Attack l '\

MadIoT on 1 Power flow +
the Syn. droop, AGC,

Texas Grid | —Grid Topology: <Hot and fast
summer, Extreme winter> | | reserves

—Attack: Ramp up power

| for 0 - ~1M IoT devices
42 Carnegie Mellon University



MadIoT Example (cont.)

43

Texas Summer: MadloT Failure due to Insufficient

Generation Power Output
(MW)

Power Capacity

6000

5000

4000

3000

2000

1000

0 1000 2000 3000 4000 5000 6000

MadIoT Attack Cumulative Load
Increase (MW)

Generation change in response to increased demand from MadloT attack
Non-physical simulation because generators exceed their limit
Sum of maximum power output of all generators

Unstable grid region

Generation Power Output

Texas Extreme Winter: MadloT Failure due to
Thermal Overload of Lines

6000 ~ T T T T T T T T T T T T m e e e e e e e e e
5000

4000

gmoo

=

— 2000 ////‘///

1000 »

0¥

0 1000 2000 3000 4000 5000 6000

MadloT Attack Cumulative Load
Increase (MW)

During the extreme winter scenario,
model (syn. Texas network) predicts
that synchronously turning on ~4%
of the total load can cause a system
failure. Carnegie Mellon University



FDIA Example

Grid
Topology
Threat =P
Attack
|
FDIA on the
South
Carolina
- Grid Setting

44

Simulator F=—pp»

Carnegie Mellon University



FDIA Example

Simulator F—p»

Grid
Topology °
Threat =P o —P
l Attack
FDIA on the i
Syn. _SOUth - —>Grid Topology: <normal
Carolina grid setting, noisy meas.>

- Grid

45

—Attack: Spoof a subset of
grid measurements with
system knowledge K

Carnegie Mellon University



FDIA Example

RSS: Residual
sum of squares

Simulator =——pp RSS

Grid
Topology °
Threat =P o —P
Attack
| | It
FDIA on the I
Syn. _SOUth —-Grid Topology: <normal
Carolina

- Grid

46

grid setting, noisy meas.>

—Attack: Spoof a subset of
grid measurements with

. system knowledge K

|

- AC State-
Estimation +
Bad-data

Detection

Carnegie Mellon University



FDIA Example (cont.)

* Ran 4 scenarios with varying system knowledge K

- Key takeaway: the efficacy of the attack is dependent of attacker’s
knowledge of grid state

5000

1 — No attack
2 — FDIA, (ideal) Attacker has perfect system knowledge

3 - FDIA, imperfect topology knowledge K,,,, = 50
4 — FDIA, imperfect network parameter knowledge K, = 0.02

4000

3000

RSS

2000

— 1is the critical value of Chi-square distribution
— With RSS > 1, bad-data detection raises an alarm

1000

12 3 4

RSS: Residual sum of squares
47 (also called the J-value) Carnegie Mellon University



DYNWATCH:
Physics-driven Data Mining
Technique for Anomaly
Detection



Data Processing in High-voltage Grids

* Data processing
In control rooms

- AC State-
Estimation
(ACSE)

- Topology
Estimation (TE)

Source: ISO-New England

o Carnegie Mellon University



Data Processing in High-voltage Grids

* Data processing
INn control rooms

- AC State-
Estimation
(ACSE)

- Topology
Estimation (TE)

* Fundamental in
grid operation

Source: ISO-New England

-0 Carnegie Mellon University



Data Processing in High-voltage Grids

* Any anomalous
data can
significantly
hamper grid
operation

BT HL [ TE s L L]

.-

Source: ISO-New England

& Carnegie Mellon University



Anomalies in ACSE and TE

* Many known causes for anomalies in grid data

network
failure

™S censorl —» m
Physical —>®< sensor 2 » v
damage

sensor 3 —» w

Cyber
attack

* Anomalous data must be identified and isolated for
reliable operation

52 Carnegie Mellon University



Status Quo for Anomaly Detection: Spatial Pattern

* Setting: spatial features at a single time snapshot

Natural Sensor readings over time
Failure

Physical \ sensorl —
d _’®< sensor 2 »
amage L,
sensor 3 — w*
Cyber /

attack

Spatial pattern

at time t
53 Carnegie Mellon University



Status Quo for Anomaly Detection: Spatial Pattern

* Setting: spatial features at a single time snapshot

* Measurement data is processed by ACSE and BDD
units

Natural Sensor readings over time
Failure

: \ sensorl —
Phy5|cal — sensor 2 . Bad Data
damage @( g kl ACSE Unit i hatection [
X
sensor 3 — w
Cyber /

attack

Spatial pattern
at time t
>4 Carnegie Mellon University



Status Quo for Anomaly Detection: Spatial Pattern

* Setting: spatial features at a single time snapshot

* BDD may trigger an anomaly based on the J-value
from ACSE

_ _ Anomaly
Natural Sensor readings over time detected
Failure \ &isolated\
) 1 —
Physical >Ensor
— sensor 2 » =1, Bad Data
damage / _x ACSE Uit 5 otection
sensor 3 — w
Cyber
attack

Spatial pattern
at time t
55 Carnegie Mellon University



Status Quo for Anomaly Detection: Spatial Pattern

* Setting: spatial features at a single time snapshot

* Some anomalies are not detectable from analysis of
spatial patterns alone

_ _ Anomaly
Natural Sensor readings over time detected
Failure \ &isolated\
) 1 —
Physical >Ensor
— sensor 2 » =1, Bad Data
damage - ACSE Unit b otection
Cvber sensor 3 — w
attack

Spatial pattern
at time t
>6 Carnegie Mellon University



Status Quo for Anomaly Detection: Temporal Pattern

* Given sensor data over time, can we detect an anomalous data-
point?

* Time-series processing can detect anomalies that violate
temporal statistical consistency (see t = 15)

SEeNnsor | | ~+ anomal
readings | ! ! ) Y

=~ estimation
t=1 t=6 t=11 t=15

>/ Carnegie Mellon University



Topology Changes — False Positives

* Power grid topology changes frequently

W O<<1><

t11 t=15

sensor
readings|
[

>8 Carnegie Mellon University



Topology Changes — False Positives

* Power grid topology changes frequently

D
W O< <1>< =:

S

_{c - 7.5

sensor S 50
L
readings | | -

2.5
| £

: . ' Z 0.0 L
0 5 10 15 20 25

time/h
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Topology Changes — False Positives

* Power grid topology changes frequently
- Classical approaches can result in false positives (FP)
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DYNWATCH: Temporal + Spatial-based Detection

* The proposed approach on time-series data mining considers
the impact of topology change

- The algorithm has 3 steps

sensor
readings | I |
|
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DYNWATCH: Temporal + Spatial-based Detection

* The proposed approach on time-series data mining considers
the impact of topology change
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DYNWATCH: Temporal + Spatial-based Detection

* The proposed approach on time-series data mining considers
the impact of topology change
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DYNWATCH: Temporal + Spatial-based Detection

* The proposed approach on time-series data mining considers
the impact of topology change
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Domain-informed Graph Distance

* The difference between two graphs can be seen as different line
outages on the union graph

* Impact of line outage is quantified by line outage distribution
factor (LODF)

* Graph distance is the sum of line outage impacts

g trans
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Temporal Weighting by Bias-variance Trade-off

* Weigh the past sensor data using a bias-variance trade-off

- Bias: data from very different topology will increase bias
- Variance: only using data from the most similar topology will increase

variance
large distance
r--TT T T T s I \ C
small distance min Z wed, +=wlw
ng G: A 93 w - 2
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Anomaly Score - Idea

* Learn a distribution of normal behavior while ignoring previous
anomalous data

- Median and IQR are more robust statistics

t=1 t=6 t=11 t=15 anomaly

sensor : : - N

) | I I >t=15
readings \ N\ L

previous
anomaly
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Anomaly Score - Construction

* Anomaly score measures the deviation from distribution center

For sensor s at time t:

x(t) — pu(t)
IQR(t)

Final score for time t:

Ag (t) =

A(t) = max ag(t)

u(t) = Weighted Median; IQR(t) = Weighted IQR
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DYNWATCH has Lower False Positives
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False data injection
attack (FDIA) is a
coordinated attack on
grid measurements

With a constructed FDIA
attack, only DYNWATCH
IS shown to detect all
anomalies without False
Positives (FP)
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High Performance with Scalability

* DYNWATCH outperforms other classical approaches based on
AUC and F-measure
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The proposed method scales (almost)
linearly with grid size.
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Warm Starter for
Cyberthreats-based
Contingencies



Intro: Contingency Analysis

* Contingency analysis (CA) is pivotal for grid reliability

- Evaluates N-1 security: Loss of any 1 device should not cause
grid failure

- Make necessary adjustments if the grid fails N-1 security
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Intro: Contingency Analysis

* Contingency analysis (CA) is pivotal for grid reliability

- Evaluates N-1 security: Loss of any 1 device should not cause
grid failure

- Make necessary adjustments if the grid fails N-1 security

* CA Requirement: A tool that can solve 10k+ power
flow networks within minutes robustly

- Current tools utilize the pre-contingency solution as the
initial condition due to the vicinity to the final solution

/3 Carnegie Mellon University



Moving beyond N-1 security for Cyber Resiliency

* Many cyberthreats (MadIoT, substation takeover, etc.)
represent N-x events

- Necessitates that we move beyond N-1 to N-x security
- Current methods for CA may not work

Before MadloT After MadloT

Generator

[l Load

[J Manipulated loads
Droop control

1 4
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Moving beyond N-1 security for Cyber Resiliency

* Many cyberthreats (MadIoT, substation takeover, etc.)
represent N-x events

- Necessitates that we move beyond N-1 to N-x security
- Current methods for CA may not work

CA Requirement for cyberthreats: Robust and fast
power flow method for evaluating N-x events

75 Carnegie Mellon University



A Novel Warm Starter Method

* Unlike N-1 contingency evaluation, the N-x contingency solution
IS not close to the pre-contingency solution

* Tradeoff between robustness and speed

- Physics-based tools can be made robust but are slow
- Pure data-driven methods can be fast but may lack robustness

76 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics- C b K T ik ;
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022). ‘“arnegie Mellon University



A Novel Warm Starter Method

* Unlike N-1 contingency evaluation, the N-x contingency solution
IS not close to the pre-contingency solution

* Tradeoff between robustness and speed

* A warm starter can combine the benefits of both physics-based
and data-driven methods

Use ML to learn good initial conditions for N-x
events and feed them into the physics-based
solver for fast convergence!

7 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics-

Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022). Carnegie Mellon University



Graph-based Warm Starter Model

* Power grid is an interconnected graph

- Voltages at a node are a function of
neighboring node voltages

Input x:
* System information before contingency
e Contingency information

7 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics- C b K T ik ;
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022). ‘“arnegie Mellon University



Graph-based Warm Starter Model

* Power grid is an interconnected graph

* The joint distribution of post-
contingency voltages Y1 =
conditioned on contingency &
system information can be
described via a pairwise Markov
Random Field (cMRF) model:

Input x:
n n . . .
1 * System information before contingency
P(ylx,0) = ‘ “/)i(}’i) ‘ ‘ Vi(Vs Ye) « Contingency information
Z(6,%)1 | oeE
= S,

7 Li, Shimiao, Amritanshu Pandey, and Larry Pileggi. "GridWarm: Towards Practical Physics- C b K T ik ;
Informed ML Design and Evaluation for Power Grid." arXiv preprint arXiv:2205.03673 (2022). ‘“arnegie Mellon University



Conditional Gaussian Random Field (cGRF) Model

* Assume the cMRF model to be Gaussian (cGRF)

n

1 n
P(Y1x,0) = 5o ]_1[ D (SQEwi(ys, yo)

if P(y|x, @) is Gaussian then:
1 7 T
Yi(yi) = exp —YiAiyit iy
1ot
l/)i(ys: yt) = exp(_EySAsth)
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Conditional Gaussian Random Field (cGRF) Model

* Assume the cMRF model to be Gaussian (cGRF)

- Use local neural nets to model parameters in A and n
- Apply domain knowledge to choose the feature space

[ 1 1
1 n n At SAan 0 SA@
_ 1.7 1 1 M
P(ylx,0) = 700 x)‘ ‘t/a-(yi) ‘ ‘ Yi(YVs: ¥e) a_zhan M2 ghes ghaw| o,
’ 7 1 1 AR b
=1 (s,t)EE ) 0 EAfz,s) A; - ZAGy N4
: : : 24T
if P(y|x, @) is Gaussian then: 2 A %A{w %A{m As |

L T
Y;(y;) = exp 5V Ajyi+m;y;

1
Vi (Vs ¥e) = exp(— Eyg'Asth)
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Conditional Gaussian Random Field (cGRF) Model

* Assume the cMRF model to be Gaussian (cGRF)

- Use local neural nets to model parameters in A and n

- Apply domain knowledge to choose the feature space

1 n
PoIx6) = o] [wow | |
=1

n

(s,t)EE

if P(y|x, @) is Gaussian then:

1
Y (yi) = exp (— >

yiA; yi+ mTyi>

1
Vi (Vs ¥e) = exp(— Eyg'Asth)
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Vi(Vs: Ye)

1 1
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1 1 1
T
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N3 )

T mgin — Z 1(6)/
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where:

1(0) = P(y’|x/,67)



cGRF Model Inference

* With a trained model parameters 8, = [0,0,], giVen Xiest, Peest
can be inferred:

A= fA(xtest» éA)
n = fn (xtest» én)

A\ytest — ﬁ
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Physical Interpretability

The proposed warm starter provides a linear proxy for grid
operation post-contingency
.

ne linear proxy (A, n) is structurally similar to post-contingency
admittance matrix at solution Y.,/

Ybus A ] N
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Including Domain Knowledge

* Developed three variants of graphical model-based warm

85

starter: cGRF, cGRF-PS, cGRF-ZI

Domain
Knowledge cGRF cGRF-PS cGRF-ZI
Graphical Nature
of the Grid Y Y Y
Param_eter N Y Y
Sharing
Zero Injection N N Y
Nodes
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Results: Proposed Warm starter (cGRF)

# iterations

86

100

90 1

80 -

70 1

60 -

50 -1

40 -

30 1

20 ~

10

ATiVSgZOOO #iterations

b\ Al

o median
d mean

. ACTIVSg2000 #iterations

initialization method

(b) 2000-bus case.

On average, we
observe a 5x speed
Improvement over
traditional initialization
methods

Carnegie Mellon University



Conclusions

* Research goal: Develop analytical tools for grid cybersecurity
- Special focus on combining data-driven and physics-based techniques

* Very interested in collaborations to maximize the impact

87 Carnegie Mellon University
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