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A B S T R A C T   

Temporal knowledge discovery in clinical problems, is crucial to investigate problems in the data science era. 
Meaningful progress has been made computationally in the discovery of frequent temporal patterns, which may 
store potentially meaningful knowledge. However, for temporal knowledge discovery and acquisition, effective 
visualization is essential and still stores much room for contributions. While visualization of frequent temporal 
patterns was relatively under researched, it stores meaningful opportunities in facilitating usable ways to assist 
domain experts, or researchers, in exploring and acquiring temporal knowledge. In this paper, a novel approach 
for the visualization of an enumeration tree of frequent temporal patterns is introduced for, whether mined from 
a single population, or for the comparison of patterns that were discovered in two separate populations. While 
this approach is relevant to any sequence-based patterns, we demonstrate its use on the most complex scenario of 
time intervals related patterns (TIRPs). The interface enables users to browse an enumeration tree of frequent 
patterns, or search for specific patterns, as well as discover the most discriminating TIRPs among two pop
ulations. For that a novel visualization of the temporal patterns is introduced using a bubble chart, in which each 
bubble represents a temporal pattern, and the chart axes represent the various metrics of the patterns, such as 
their frequency, reoccurrence, and more, which provides a fast overview of the patterns as a whole, as well as 
access specific ones. We present a comprehensive and rigorous user study on two real-life datasets, demon
strating the usability advantages of the novel approaches.   

1. Introduction 

Temporal knowledge discovery stores significant potential impact in 
medicine, especially now that more longitudinal electronic health re
cords’ data becomes more accessible [35]. Specifically the investigation 
of longitudinal clinical data is attracting focus in recent years in 
biomedical informatics. Frequent temporal patterns discovery is a 
commonly used method that stores great opportunities to discover and 
acquire knowledge. The use of temporal abstraction and Time Intervals 
Related Patterns (TIRPs) in the analysis of longitudinal data Moskovitch 
and Shahar [31], Moskovitch and Shahar [32], and specifically in 
Electronic Health Records, was demonstrated successfully in several 
tasks, such as classification and outcomes prediction, which even out
performed deep learning based methods, such as Long Short Term 
Memory (LSTM) or Convolutional Neural Network (CNN) 
[56,17,13,37,38]. 

However, with opportunities, also come challenges. While mean
ingful advances were made in the computational aspects of the 

discovery of frequent temporal patterns, one of its main challenges re
mains the large number of discovered patterns. Some studies suggested 
relevant interestingness measures to favor patterns, to the best of our 
knowledge, no study has yet focused on the visualization of the explo
ration of the tree of patterns (the result of any patterns mining method, 
whether not temporal (i.e., association rules mining) or temporal (i.e., 
sequential mining or time intervals mining) patterns. In order to acquire 
meaningful temporal knowledge, effective visualization is required, 
which is the focus of this paper and a topic relatively that was not much 
studied in the research community. 

Visualizing frequent temporal patterns is a challenging task. First, 
the commonly large amount of discovered patterns makes it difficult to 
explore and choose those that are of a greatest interest and meaning. 
Note that this work focuses on the visualization of a collection of 
discovered temporal patterns that are the output of a mining process, 
rather than visualization of temporal data, and the purpose is not to 
provide analytics of the raw data, but rather the input data are the 
discovered TIRPs and their properties. 
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Thus, the input data are the discovered TIRPs, which can not be 
analyzed using traditional approaches for analytics. Additionally, while 
the visualization of temporal patterns can clearly help in knowledge 
acquisition and acquiring insights from the displayed patterns, current 
systems [42,16,54,46] do not enable to users to compare patterns 
discovered in different populations. 

Thus, the motivations behind the development of the introduced 
interface are the following: exploration of an enumeration TIRPs tree to 
enable access to TIRPs of interest, based on various TIRPs’ metrics, such 
as the vertical support, horizontal support, or mean duration. This paper 
introduces KLW, a novel visual interface that enables exploration of an 
enumeration tree of frequent patterns through navigation, search and 
retrieval, and visualization of the pattern’s related metrics. Specifically, 
the interface was designed and implemented for frequent TIRPs, of 
which Sequential Patterns are a private case, and these principles can be 
used easily for Sequential Patterns visualization as well. In addition to 
visualization and exploration of the discovered tree of frequent TIRPs 
from a single population, in this paper, the option to visualize and 
explore TIRPs that were discovered separately in two populations is 
investigated for the first time, as far as we know. Thus, based on two 
populations (that can be two classes of a classification problem) from 
which two trees of frequent TIRPs were discovered, the novel visuali
zation enables to access easily the TIRPs that are most discriminatively 
efficiently through an advanced informative bubble chart based 
visualization. 

To evaluate the usability and usefulness of the KLW interface, we 
conducted a comprehensive user study in which the participants had to 
perform tasks using the new novel interfaces. We evaluated their per
formance according to their answers’ correctness (i.e., accuracy), task 
execution time duration, and level of ease of task execution (a subjective 
measure). 

To summarize, the contributions of the paper are the following:  

• Navigation and exploration of a frequent patterns enumeration tree 
through event types (symbols) or various pattern’s metrics 

• Visualization of a TIRP, including its supporting instances, and en
tities’ demographic distributions and metrics  

• Novel bubble chart based presentation of the frequent patterns in a 
bubble chart that presents several metrics using the axes and bubble’ 
properties  

• Novel presentation of patterns in two populations and their 
discriminative metrics  

• Novel presentation of the discriminative patterns on a bubble chart 
illustrating their frequency in the populations, and more metrics 
using a bubble chart 

The rest of the paper is organized accordingly. We start with the 
Background section covering relevant topics, propose our new visuali
zation in the Methods section, introduce the user study in the Evaluation 
section, and then its findings in the Results section. 

2. Background 

Temporal data visualization has evolved over the past years [1], 
offering various visualization tools and techniques in order to present 
temporal data or knowledge. Different types of time-oriented data 
require visualization for various purposes; however, visualization of 
frequent temporal patterns has been significantly under-investigated. 

2.1. Temporal data and temporal data mining 

Temporal data is data that represents measurements or states in time, 
which comes from many sources ranging from manual data entry to data 
collected using sensors. Sampling might occur at a fixed frequency, 
which is often the case for automated sampling or at random periods, as 
occurs in manual measurements. Often, specific time-stamped data 

points might be missing, or their measurements might include an error. 
Raw data might also be represented by time intervals, such as 
medication-administration periods. The duration of the events can be 
fixed or vary. 

Temporal data mining is an extension and a sub-field of data mining. 
Data mining is the process of discovering patterns in large data sets 
involving methods at the intersection of machine learning, statistics, and 
database systems. Temporal data mining has the capability of mining 
activity rather than just states, and makes it possible to infer relation
ships of contextual and temporal proximity that may indicate a cause
–effect association [52]. This sub-field offers an understanding of 
scientific phenomena and may create more productive and accurate 
classification models [33,34]. 

2.2. Temporal abstraction 

A major challenge in mining multivariate temporal data is the het
erogeneity of the sampling forms and appearances of the data, which can 
be time-point series sampled regularly or not, or events that may or not 
have duration. Abstracting time-point series into symbolic time intervals 
representation enables a uniform representation of the heterogeneous 
temporal variables. 

State Abstraction (see Fig. 1), which we use in this study, includes 
mainly-two steps. First classifying each time-point value into a state, 
given relevant cutoffs, and then concatenating adjacent states that have 
the same symbol. A detailed description of the process can be found in 
Moskovitch and Shahar [31]. 

Several common discretization methods exist, such as Equal Width 
Discretization (EWD); Symbolic Aggregate approXimation (SAX) [27], 
which consists on the Gaussian distribution of the data; Temporal Dis
cretization for Classification (TD4C), and more. TD4C is a supervised 
method that learns the cutoffs that result in the most different state 
distribution between the classes [31]. 

Previous studies showed the advantages of TD4C [32] in comparison 
to EWD and SAX, especially for the classification of time-oriented clin
ical data. In the evaluation of the current study, we performed a com
parison of the use of both knowledge-based temporal abstraction (KB), 
EWD, SAX, and TD4C. After the data is transformed into a uniform 
representation of symbolic time intervals, which are defined in Defini
tion 1, TIRPs can be discovered [31,32]. 

Definition 1. A symbolic time interval, I = <s, e, sym>, is an ordered pair 
of time points, start-time (S) and end-time (e), and a symbol (sym) that 
represents one of the domain’s symbolic concepts, or their abstraction, which 
in our study can be a state of a lab result (i.e., high blood pressure), 
abstraction of vital signs, or exposure to a medication. 

2.3. TIRPs mining and TIRPs’ metrics’ definitions 

In the past two decades, meaningful advancements were made in the 
problem of TIRPs mining from symbolic time intervals (STIs) data, in 
which the temporal relations among the STIs are represented using 
entire or some subset of Allen’s temporal relationsAllen [2]. Allen 
defined seven mutually exclusive temporal relations including: before, 
meets, overlaps, finish-by, contains, starts, and equal, as shown in Fig. 3. 
Several algorithms were proposed for time intervals mining, improving 
their efficiency and runtime [55], Hoppner [19,22], Mörchen and Ultsch 
[30], Moskovitch and Shahar, [32]. Among these, ARMADA, by 
Winarko and Roddick [53], is a projection-based efficient time-intervals 
mining algorithm, based on an efficient sequential patterns mining al
gorithm. Patel et al., [40] introduced IEMiner, which extends the pat
terns directly. The KarmaLego method [33], which we use in this study, 
uses an efficient data structure and exploits the transitivity property of 
the temporal relations for an efficient candidate generation process that 
filters candidates that cannot exist in reality. The analysis of its 
complexity is described in [31]. 
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Unlike previous methods, KarmaLego discovers the complete set of 
frequent TIRPs since it discovers their entire set of horizontally sup
porting instances [31,32]. This enables a complete and comprehensive 
TIRP representation as features for classification, in addition to Binary 
(i.e., whether the TIRP exists at least once in the records), that was used 
in earlier studies [5,40]. Recently Harel and Moskovitch [18] published 
TIRPClo which discovers closed TIRPs, and is complete as well. 

Definition 2. A non-ambiguous Time Interval-Related Pattern (TIRP) P is 
defined as P = {I,R}, where I = {I1, I2,.., Ik} is a set of k symbolic time in
tervals ordered lexicographically (ordered by their start-time, end-time, or 
symbol) and R =⋀k

i=1 ⋀k
j=i+1r(Ii, Ij) = {r1,2(I1,I2),.., r1,k(I1,Ik), …, rk− 1, 

k(Ik− 1,Ik)} which defines all the temporal relations among each of the (k2-k)/ 
2 pairs of symbolic time intervals in I. 

Fig. 2 presents an example of a 3-sized TIRP, having three lexico
graphically ordered symbolic time intervals displayed graphically along 
the timeline on the top. The half-matrix on the bottom represents the 
conjunction of the temporal relations among the symbolic time intervals 
that enables a non-ambiguous representation. 

Since a temporal pattern can occur and be discovered multiple times, 
which appear as multiple instances within a single entity (an entity can 
be the entire records of a patient, or a specific time window of 6 h in the 
Intensive Care Unit of a specific patient for example), we distinguish 
between two types of support: vertical support (Definition 3), which 
refers to the percentage of the entities in the database having a pattern, 

and the horizontal support (Definition 4), which represents the number 
of patterns discovered within the symbolic time intervals of a specific 
entity. 

Definition 3. Given a database of |E| distinct entities, the vertical support 
(VS) of a TIRP P is denoted by the cardinality of the set EP of distinct entities 
within which P holds at least once, divided by the total number of entities |E|: 
Ver_sup(P) = |Ep |

|E| . 

In the context of patterns mining, the term support is usually used 
and refers to what we call vertical support (VS). When a TIRP has vS 
above a minimal predefined threshold, it is referred to as frequent. 

The task of mining time-intervals is to find all the TIRPs whose vS is 
above a predefined minimal vertical support threshold. However, in 
order to discover the complete set of TIRPs, the entire set of horizontally 
supporting (Definition 4) instances also have to be discovered [32]. 

The horizontal support (Defintion 4) and Mean Duration (Definition 
6) metrics are discovered as part of the TIRPs discovery process. The 
following definitions describe those TIRP’s metrics. 

Definition 4. The horizontal support (HS) of a TIRP P for an entity ei, is 
the number of instances of the TIRP P found in ei. However, to represent the 
average HS in a group of entities, for example all the patients that have the 
TIRP P (its VS), we use the Mean Horizontal Support (MHS). 

Definition 5. The Mean Horizontal Support (MHS) of a TIRP P describes 

Fig. 1. A series of raw time-series (at the bottom) is abstracted into an interval-based state abstraction that has three discrete values: Low, Medium, and High (at 
the top). 

Fig. 2. A 3-sized TIRP presented graphically on a timeline (at the top) and the 
temporal relations as a half-matrix (at the bottom). 

Fig. 3. Allen’s temporal relations among two symbolic time intervals.  
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the average HS values of all its |Ep| supporting entities (each entity I may have 
a different number of hsi instances). Thus, given a TIRP P and a set of |Ep| 
supporting entities, having a hsi >=1 {hs1, hs2⋯..hs|Ep |}, MHS(P) =
∑e

i=1(hsi)

|Ep |
.

Since the duration of the STIs in a TIRP are not part of its definition, 
the duration of an STI may vary in each of its supporting instances. For 
that, the mean duration metric describes the average duration of the 
entire set of a TIRP’s instances accordingly. 

Definition 6. The mean duration (MD) of the n horizontally supporting 
instances of the same k-sized pattern P within an entity e is defined by the 
average of the durations of all the instances, where each instance duration is 
defined from its earliest time point till its last time point. We here define the 

MD for TIRP:MeanDuration(P, e) =

∑n
i=1

(max
k

j = 1 I
i, j
e − I

i,1
s )

n , where the 
Max operator selects the symbolic time interval having the latest end-time (e) 
among the k symbolic time intervals of an instance i (among n instances), and 

I i,1
s is the start-time (s) of the first symbolic time interval in the ith instance. 

Their subtraction is the time duration of the instance. 

While MD is a metric that is defined per entity, in order to represent 
the TIRP, similar to the MHS, here is the definition of the Mean MD, 
which is at the TIRP level. 

Definition 7. The Mean Mean Duration (MMD) of a TIRP P is the average 
of the MD values of its |Ep| supporting entities. Each entity i may have several 
instances of P (having different lengths of MDs), whose mean is the mdi 
(Definition 6), while the MMD refers to the average of the MD values of the 
entire set of entities. Thus, given a TIRP P and a set of |Ep| supporting entities 

{md1, md2…., md|E
p
| }, the MMD of P is: MMD(P) =

∑|Ep |
i=1

mdi
|Ep |

.

After running a TIRPs’ discovery process, such as KarmaLego that we 

use in this study, or another method, the output is an enumeration tree 
of all the discovered frequent TIRPs, which is shown in Fig. 4. Each node 
represents a frequent TIRP that was discovered (including its supporting 
instances data). In the first level of the tree (below the root), there are 
patterns that consist on a single STI (1-sized pattern), and going deeper 
in the tree levels, there are expanded patterns, including additional new 
symbolic time intervals and the corresponding temporal relations to all 
the earlier pattern’s symbolic time intervals. Going down through the 
tree, the TIRPs typically have lower, or equal, vertical support, but al
ways above the minimal vS threshold. This discovered TIRPs enumera
tion tree is the input to the visual interface. 

2.3.1. The discovered TIRPs tree visualization challenge 
The discovered TIRPs enumeration tree and the patterns’ related 

metrics’ data is the input to the visual interface, whose exploration in
troduces several visualization challenges. The challenge in visualizing 
such a patterns tree is that, in order to enable browsing according to the 
various patterns’ metrics and the pattern’s details, which are essential 
for the user, and may influence her choices, is that it cannot be displayed 
as a tree that represents only the structure of the extended TIRPs. For 
that, here the interface shows each time a node in the tree – a TIRP – the 
user is on. The main requirements from such visualization is to enable 
browsing within the patterns tree by navigation, to present a pattern 
visually and to enable exploration of the patterns by their metrics’ 
values. 

2.4. Visualization of temporal data and knowledge 

The field of visualization tools for temporal data is crucial in clinical 
data [15,21,23,36], in which temporal patterns are discovered in pa
tients’ records data [7,8,9,43]. The main goal of this kind of visualiza
tions is to allow exploring and querying Electronic Health Records 
(EHRs) in order to support clinical decision-making and research [28]. 

Fig. 4. A frequent TIRP enumeration tree, which is the result of a TIRPs mining process. For simplicity, it includes only three symbol types, X, Y and Z, that are 
frequent. Below are the frequent TIRPs, starting with the 2-sized TIRPs, and going down to larger TIRPs. Each node is a TIRP represented by its sequence of STIs and 
the conjunction of the temporal relations represented by the half-matrix. 
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Visualization of time intervals data was studied in the past in several 
papers for various purposes, focusing on different aspects and making 
meaningful contributions, in the visualization of reasoning in time in
tervals [10,6]. However, these studies mainly referred to the visualiza
tion of the patterns themselves, and not the visualization of an 
enumeration tree of a set of discovered frequent TIRPs, as we do in this 
paper, nor on the visualization of patterns in two populations. Wong
suphasawat and Gotz [55] introduced a visualization tool which aims at 
assisting in clinical studies and in diagnosis of patients. Temporal data 
visualization has evolved over the years [1] proposing various visuali
zation tools and techniques in order to present temporal data [4,44,45] 
or knowledge, such as temporal patterns [43,15]. Moreover, as 
mentioned, temporal data can be transformed using temporal data 
abstraction into meaningful symbolic time intervals, that describe pe
riods of time the signal is increasing or decreasing, or being in a specific 
state continuously (which is also what we do in this paper for purposes 
of temporal knowledge discovery - see section 2.2). KNAVE [29,48] and 
VISITORS [24], Klimov et al. [25,26,47] are visualization systems that 
visualize the process of temporal abstraction on raw numerical data for 
temporal reasoning purposes over time. VISITORS enables different 
types of queries that allow to retrieve the list of entities that satisfy a set 
of constraints and allows searching for both raw data and abstracted 
data among entities collection, given various associations among the 
temporal variables’ states. 

The primary purpose of visualization of temporal data or knowledge 
[51,52,56,55,28] is to present the data longitudinally in a way that fa
cilitates the recognition of temporal patterns or models. 

However, the presentation or visualization of multivariate hetero
geneous data is highly challenging due to the variety of types of tem
poral data [49], such as time-points, time-intervals, temporal patterns, 
and more, and the longitudinal functionality that is required in order to 
present this type of data. Consequently, visualization tools for knowl
edge in the form of temporal patterns is scarce and has seldom been 
investigated, as we discuss later (Section 2.4.1). 

2.4.1. Visualization of temporal patterns 
Notable work in temporal patterns visualization systems was intro

duced by Perer and Wang [42], Gotz et al. [16],Vrotsou and Nordman 
[54], and Poon et al. [46]. All these systems present a visual interface 
that aims to display the patterns discovered by a temporal data mining 
algorithm and tries to allow the user to explore the pattern in an inter
active manner. Most temporal patterns’ visualization systems are based 
on the output of frequent sequential mining algorithms rather than on 
frequent time interval-related patterns, as we do in this paper. 

There are systems that use the SPAM sequential mining algorithm 
[3,16] or an enhanced SPAM approach in order to make SPAM capable 
of detecting temporal patterns with constraints on their duration [42], 
while other [46,54] used the PrefixSpan [41] sequential mining 
algorithm. 

Temporal patterns visualization systems also differ in terms of the 
visual technique in which the patterns are displayed. Some of the sys
tems use Sankey diagram layouts [14] and alluvial diagrams such as 
Frequence [42]. Events in the frequent sequences are represented as 
nodes, and events that belong to the same frequent sequence (i.e., 
pattern) are connected by edges, where their frequency is presented by 
the thickness of the edges, while their color represents their correlation 
with some specified outcomes. Vrotsou and Nordman [54] proposed a 
visual technique to present the patterns, in which the patterns are pre
sented as a tree, where each node represents an event, its color repre
sents the event category, and the size of the nodes reflects the support of 
each pattern, decreasing as the tree expands. Another type of visual 
patterns presentation is 3D sunburst visualization [50], where each 
event (i.e., pattern) is presented as a colored block, and when a mouse 
hovers over an event, the visualization highlights the full path to that 
event (the pattern) and its events sequence, and the support values are 
displayed. In Gotz et al. [16], the patterns are presented in an event 

chart, while the distance between the events represents the mean 
duration between them. 

Finally, we provide examples of how the main features that the 
systems need to support, according to Shneiderman [52], are imple
mented in the systems. Only one system, Frequence, allows zooming by 
displaying patterns that include events at different hierarchy levels by 
their category. This enables the user to notice more patterns by different 
hierarchical levels of the categories of the pattern’s events. Filtering 
temporal patterns can be done either by temporal or non-temporal 
conditions. An example of filtering by non-temporal conditions can be 
found in Frequence, which allows filtering of the presented patterns by 
specific population or by some outcome. Frequence also allows filtering 
under temporal conditions, and Gotz et al. [16] allow filtering patterns 
that contain only events that occurred within a specific time range or by 
a specific event sequence. These researchers presented the retrieved 
patterns in a scatterplot, where each pattern is located according to its 
support in the negative and positive outcomes, and color and size 
represent their correlation to certain outcome measures. Another 
essential feature to support visualization systems is aggregation. 

The surveyed pattern-based systems support relatively simple ag
gregations, such as the average number of events per pattern and mean 
duration per pattern. Gotz et al. [16] show gender and age distributions 
for a set of patients returned by a query module. While the visualization 
of temporal patterns can clearly improve knowledge and insights from 
the displayed patterns, the main drawback of the surveyed systems is 
that they do not support users in comparing patterns. For example, none 
of the systems support the comparison of patterns that are found in 
different populations. Another drawback is that the systems provide 
very few relevant statistical details on the displayed patterns. For 
example, these visualizations provide no information regarding sup
porting entity distributions by demographic data such as gender and 
age. This makes it impossible to draw conclusions from the visualized 
patterns, for example, whether patterns are more common in men or in 
women, or among young or old people. In addition, most of these sys
tems are based on frequent sequential mining algorithms rather than on 
frequent time interval-related patterns, and so the duration of the events 
in the pattern sequence has no effect. 

3. Materials and methods 

In this study, we introduce KLW, a novel visual interface that enables 
presentation and browsing of a tree of frequent time interval-related 
patterns (TIRPs) that were discovered by the KarmaLego algorithm 
(See Section 2.3). While KLW is demonstrated on TIRPs, its principles 
can also be used for other types of patterns, such as sequential patterns, 
which are in fact a private case of TIRPs (having time intervals without 
duration). 

The KLW interface was designed with three main purposes: 1. to 
conveniently and effectively navigate and explore the frequent patterns 
enumeration trees that were discovered by a patterns mining process, 
given various metrics (such as a TIRP’s frequency, reoccurrence, dura
tion, and more), as well as their distribution in a population; 2. to 
identify patterns that differ significantly between two populations, 
which we refer to as “Discriminative TIRPs”; and 3. to enable the query 
and retrieval of patterns of interest that were discovered in either a 
single population or two populations. The query results are presented in 
two different ways: by graphs or by tables which are part of the com
parison in the evaluation phase. This section will present the KLW 
interface by focusing on three main visualizations. We implemented the 
server-side project using Python and the front-side using Angularjs and 
JavaScript, which was applied on an Apache server. 

3.1. KLW – visualization of TIRPs analytics 

The KLW interface for TIRPs Analytics is introduced here in details, 
which focuses on enabling the TIRP enumeration tree to be browsed, 
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along with each TIRP and its related information. Fig. 5 shows an 
overview of the KLW home page. The menu bar enables navigation 
between various functions. The DataSets option opens a table that in
cludes all available data sets and related information. The user can now 
find and choose the working data set. 

Table 1 presents the main KLW interfaces, and their main purpose 
and different properties. The objective of the interfaces is to enable users 
to explore the discovered enumeration tree of frequent TIRPs, and to 
query the TIRP tree for specific TIRP criteria. As we explain later, KLW 
enables two visualization modes: KLW1 for TIRPs discovered from a 
single population, and KLW2 for TIRPs mined from two populations. 

For each option, three interfaces exist: 1. Explore, which navigates 
and explores the TIRP tree; Query, which enables querying the TIRP tree 
for specific TIRPs according to a given criterion, for which there are two 
optional result views: 2. Table, in which the results are displayed in a 
tabular presentation, and 3. Graph, in which the results are shown in a 
two-dimensional bubble chart graph. 

The purpose of Table 1 is to provide a high level of organization and a 
summary of KLW, with additional properties of each interface to make 
their differences clear. Thus, for example, in the Query Graph, the chart 
axes have different properties for KLW1 versus KLW2: in the first, these 
are the TIRP metrics; and in the second, the metric is the same, but for 
the different populations. In the next subsections, we describe each 
interface in detail. 

3.1.1. KLW1-Explore: Visualization of TIRPs in an enumeration tree 
The output of the TIRPs discovery process results from running any 

TIRPs discovery method such as KarmaLego, and is an enumeration tree 
of TIRPs, as shown in Fig. 4. The TIRPs are displayed in the way they 
were generated and discovered in the discovery (mining) process in 
which each tree node is a TIRP, including its supporting instances. 

The order of the enumeration is determined by the symbols’ alpha
betical order, which is the way the TIRPs are generated in the mining 
process, and shown in the visualization. This tree of TIRPs serves as the 
input to the visualization system. The main challenge is to present it 
visually and allow users to navigate and explore it effectively and 
conveniently. To support the discovery of interesting patterns, KLW al
lows browsing of the tree according to several metrics, such as by the 
TIRP properties (symbols or temporal relations) or its metrics. Due to the 
various TIRP metrics, and aspects, based on which a potential user may 
want to browse the resulting TIRP tree, visualization based on the TIRPs’ 
tree structure is not sufficient to enable the TIRPs to be explored based 
on various metrics such as the TIRP’s vertical or mean horizontal sup
port, or mean duration. There are several requirements from this KLW1- 
Explore component. It must: 1. enable browsing of the TIRPs within the 
patterns tree by navigation according to the TIRP’s properties or met
rics; 2. visually display the patterns along with their metrics to facilitate 
their exploration; and 3. demonstrate demographic data distribution of 
the entities that had each TIRP, according to various classifications in 
order to gain more knowledge about the discovered patterns. An 
example of this is to provide the answer to the question: How are the 
supporting entities of the pattern divided by gender? A detailed 

explanation will now be given of how all of these requirements in the 
system were met. 

In order to enable the navigation in the TIRPs’ enumeration tree 
based on the various metrics, in each step, the interface displays the 
selected TIRP (node in the tree) using a dynamic table (see Fig. 6a) that 
shows the following optional extended TIRP choices. Each row in the 
dynamic table represents an optional extended pattern based on its 
additional symbol, and the temporal relation between the last STI of the 
current TIRP and the new symbol that creates the extended TIRP. 

Note, when adding the new last symbol, according to the TIRP rep
resentation (Definition 2), there might be several temporal relations 
between the new STI and the current TIRP’s STIs, depending on the size 
of the TIRP (if the extended TIRP’s size is 2, then it is only one; if it is 3, 
then it is 2, and so on). However, in the table, only the temporal relation 
between the current TIRP’s last STI and the new STI is displayed. 

Initially, the table shows the root level of the tree, listing all the 
frequent patterns that include all the frequent 1-sized TIRPs, which are 
actually the frequent symbols (Subsection 2.3). Selecting a row in the 
table in Fig. 6a means selecting the next symbol related to the last STI in 
the current TIRP. The extended TIRP information is loaded to the page 
with all its corresponding data. 

The color of each row in the table can either be white, meaning it is a 
leaf and that this TIRP has no further extensions; or dark, meaning the 
TIRP has further extensions. Thus, the user can navigate along the TIRP 
enumeration tree to the lowest level (leaf level) of the branch, and also 
reach all the TIRPs in the tree. In Fig. 6b, the current TIRP path in the 
tree is displayed, which is also the sequence of its symbols, enabling a 
direct return to any of the previous levels in the path. 

In Fig. 6c, the current 2-sized TIRP is illustrated visually using a 
timeline chart including the average duration of each of the TIRP’s STIs. 
Each STI is presented in a different row and different color on the 
timeline. Fig. 6d displays more information about the current TIRP, 
including the number of entities in which the TIRP was found, its vS 
(Definition 3), the Mean Horizontal Support (Definition 5), and the 
Mean Mean Duration of the TIRP (Definition 7). 

Fig. 6e displays a pie chart of the demographic variables’ value 
distributions. For example, it shows how the supporting entities are 
distributed by gender to show the percentage of females or males, or the 
distribution of the supporting entities according to age groups, etc. 

Fig. 7 shows the interface after the user “drilled down” to the third 
level of the tree. After the marked symbol in the table was selected, the 
following extended 3-sized TIRP was loaded. The changes can be seen in 
the other interface components as well: in the table in Fig. 7a, new 
optional symbol extensions are displayed,; in the table shown in Fig. 7b, 
the current path was updated and the selected pattern were changed, 
and so has the information displayed in Fig. 7c, d, and e. Particularly in 
7c a 3-sized TIRP that is an extended TIRP of the one that is displayed in 
Fig. 6c, in which there is an additional symbolic time interval (yellow). 

To show the supporting entities of a TIRP, the user can move to the 
“TIRP entities” option in the menu. Fig. 9 presents the supporting en
tities of the selected TIRP at KLW–Explore. Fig. 9b presents the mean 
presentation of the current TIRP. The table in Fig. 9a presents all the 

Fig. 5. The KLW Interface main page, including the menu at the top, and the currently available datasets.  

G. Shitrit et al.                                                                                                                                                                                                                                   

Isr
ael

-U
S BIR

D Fou
nd

ati
on



Journal of Biomedical Informatics 134 (2022) 104169

7

supporting entities of the TIRP with their HS, MD, and demographic 
data. Selecting a supporting entity will present on the right side infor
mation of the TIRP that is relevant for the selected entity. Fig. 9c pre
sents the mean presentation of the TIRP’s instances in the selected 
entity, and Fig. 9d presents each of the instances of the TIRP in the entity 
(its HS instances). As a result, the user can explore each entity and its 
TIRP instances’ symbolic time interval durations. 

3.1.2. KLW2–explore: visualization of two populations through 
discriminative TIRPs 

To assist a domain expert or data scientist in exploring the patterns 
that are discriminative, which means that they appear differently in two 
populations, the following interface was designed. Identifying discrim
inative TIRPs can be useful for knowledge discovery and also for clas
sification, when two populations are in fact two classes in a classification 
task. In this task, there are two TIRP enumeration trees. Each was 
discovered from one population, or class, of entities’ data using a TIRP 
discovery method, which is the input to the interface. To present and 

explore the patterns to compare certain populations, the two TIRP 
enumeration trees are unified into a single tree, as shown in Fig. 10. Note 
that each of the trees includes TIRPs found to be frequent (above the 
minimal vertical support threshold) in the relevant population. While a 
meaningful part of the trees may intersect, some TIRPs may be found 
frequent in one population and in infrequent in the other. However, this 
does not mean that there are no instances of this TIRP in the other 
population, but only that it is not above the minimal vS. 

The main requirements from this KLW2–Explore component are: 1. 
to explore each TIRP along with the TIRP’s metrics in both populations; 
2. to enable comparison of the TIRP’s metrics in the populations; and 3. 
to assist a user in identifying the discrimination potential of the TIRPs 
among the populations according to their metrics’ values and corre
sponding differences. 

The KLW2-Explore interface, to some extent, consists of the KLW1- 
Explore interface shown in Fig. 6, but extends it to display the TIRPs’ 
metrics’ values in each of the two populations. The table in Fig. 11a 
enables navigation on the unified enumeration tree by the dynamic 

Table 1 
The main components of KLW, their main task, and their properties.   

KLW1 
(A single population/class) 

KLW2 
(Two populations/classes) 

KLW1-Explore  KLW1-Query KLW2-Explore  KLW2-Query 

Table Graph Table Graph 

Task Explore the TIRPs’ 
enumeration tree 

Query for 
TIRPs 

Query for TIRPs Explore the TIRPs’ enumeration tree Query for 
TIRPs 

Query for TIRPs 

Query Results – Table Graph-based bubble 
chart 

– Table Graph-based bubble chart 

Displayed 
Metrics 

Current explored TIRP’s 
metrics 

– – Current explored TIRP’s metrics in each 
of the populations 

– – 

Graph Axes   X – Horizontal 
Support 
Y – Vertical Support   

X – Vertical Support in 
Population 1 
Y – Vertical Support in 
Population 2 

Bubble 
Properties   

Tone – Mean Mean 
Duration 
Size – not used   

Tone – Delta Mean Mean 
Duration 
Size – Delta Horizontal 
Support  

Fig. 6. KLW1-Explore: TIRPs tree exploration and visualization. The title indicates that the interface is at the second level of the tree (a 2-sized TIRP) in the 
enumeration tree. The dynamic table (a) presents the optional symbol extensions of the current TIRP. The path in the tree till the current TIRP (which is also its 
sequence of symbols) is shown at the top (b). A visual illustration of the current TIRP on a timeline diagram is displayed (c), along with some of its metrics (d). A filter 
of demographic data is applied to display a marginal distribution (gender in this example) of the supporting entities of the TIRP (e). 
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table, like in KLW1-Explore but, here, each TIRP is displayed with its 
metric values in each of the populations. 

For comparison, the interface presents the TIRP metric values for 
each population in several informative ways. For instance, to show the 
MD of each symbolic time interval of the selected TIRP per population, 
Fig. 11c displays a timeline diagram. In addition, Fig. 11d displays a data 
table that provides the selected TIRP metric values per population. 

To provide a visual display for each of the TIRPs’ metrics and to 
allow for comparison within the populations, several comparison visu
alizations are provided. In Fig. 11e, the bar graph shows the vS of the 
selected TIRP in each of the populations, relative to the minimal vS 
threshold. 

To demonstrate the MHS and MMD metric values of the selected 
TIRP, Fig. 11f and g, respectively, also display a confidence interval for 
each metric in each population to determine whether their difference is 
significant (when the ranges do not overlap). Finally, Fig. 11h shows a 
pie chart that presents the demographic distribution, similar to KLW1- 
Explore, but for each of the populations. 

To present the patterns that are most discriminative, or different in 
the values of their metrics among the populations, the table in Fig. 11a 
includes a score that incorporates the differences, or deltas, of these 
values. Formula 1 describes the TIRP’s discriminative score and its 
components. The components consist of the metric values’ differences of 
the TIRPs in the populations, which are referred to as deltas, the 

Fig. 7. KLW1-Explore after the user selected the next symbol TIRP extension in Fig. 6, which is loaded as a 3-sized TIRP, as shown here (the third level of the TIRP 
enumeration tree), including the new optional symbol extensions in the table (a), and the rest of the information is updated according to the current chosen TIRP. If 
the user wants to see the entire set of temporal relations of a chosen TIRP, it can be viewed by clicking on the “Relations Data” at the bottom of Fig. 7d, which 
presents the conjunction of the temporal relations of the current chosen TIRP. Fig. 8 shows the page detailing the temporal relations, after clicking on the “Relations 
Data” link. 

Fig. 8. KLW1-Explore after clicking on the “Relations Data” link. The current TIRP is presented as a half-matrix, which represents the conjunction of the temporal 
relations among its symbolic time intervals. 
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absolute subtraction of relevant metric values in the two populations, as 
we define clearly in Definitions 8, 9, and 10. Here, these components 
include the deltas for the vS (Definition 3), MHS (Definition 5), and 
MMD (Definition 7), but they can also be applied with other metrics in 
the future. The total score is calculated by the weighted sum of the 
metrics’ deltas, based on the weights defined by the user in Fig. 11i. By 
default, an equal weight is given to each of the score components, and 
the sum of the weights is 1. 

The following definitions describe the metrics’ delta components 
that are part of the TIRP Discrimination Score in Formula 1: 

TIRPDiscrimationScore(t) = WΔVS*ΔVS+WΔMHS*ΔMHS+WΔMMD*ΔMMD
(1)  

Definition 8. The Delta Vertical Support (Δ vS t) is the absolute sub
traction of the vS values of a pattern t in the two populations P and Q, such 
that Δ vS = |vs(tP) − vs(tQ)|, in which vs(tP) and vs(tQ) are the vS values of 
pattern t in the two populations P and Q, respectively. 

Definition 9. The Delta Mean Horizontal Support (Δ MHS, t) is the ab
solute subtraction of the MHS values of a pattern t in the two populations P 
and Q, such that Δ MHS = |MHS(tP) − MHS(tQ)|, in which MHS(tP) and 
MHS(tQ) are the MHS values of pattern t in the two populations P and Q, 
respectively. 

Definition 10. The Delta Mean Mean Duration (Δ MMD, t) is the absolute 
subtraction of the MMD of a pattern t in the two populations P and Q, such 
that Δ MMD = |MMD(tP) − MMD(pQ)|, in which MMD(ts) and MMD(tQ) 
are the MMD values of pattern t in the two populations P and Q, respectively. 

3.1.3. KLW1-Query & KLW2–Query: Visualization of interactive TIRPs’ 
Query and retrieval 

Instead of exploring the enumeration tree of TIRPs, an alternative 
way to explore them is by querying the enumeration TIRP tree based on 
some criteria, and retrieving the suitable TIRPs. In this section, two 
types of relevant query interfaces are introduced. Both types have the 
same query interface (see Fig. 12), but each queries a different 
enumeration tree (whether a single-population TIRP tree, or a two- 
population unified TIRP tree). For each query interface (KLW1-Query 
and KLW2–Query), two types of views were created in order to display 

the patterns that met the query conditions. The first type is a tabular 
view, and the second type is a graphical view. Fig. 12 presents the query 
interface that enables querying an enumeration TIRP tree, whether 
discovered from a single population, or a unified TIRP tree, for specific 
queries according to the following options. 

3.1.3.1. Querying the enumeration TIRP tree. To query for TIRPs, the 
interface allows specification of the symbols of the TIRPs of interest 
according to its symbols, whether they be first (starts with), interme
diate (contains), or last (ends with) as shown in Fig. 12 a, b, and c, 
respectively. For example, a user can search for all the TIRPs that end 
with the symbol “Low Heart Rate”. 

Moreover, the components in Fig. 12d allow a user to limit the query 
for patterns having metric values (VS MHS, and size) and retrieve only 
the patterns whose metric values are in the specified range. Alterna
tively, instead of presenting the user with all the symbols to choose from, 
one may suggest using a textbox, in which the user can enter the letters 
of the desired symbol. Typically, in such datasets, the user may not even 
remember the names of all the symbols (note, these are not the variables, 
but rather their states, or gradients), and based on some discussions with 
potential users, it seemed less convenient and would be more favorable 
to choose from a list. 

It may be desirable to also query for the temporal relations between 
the symbols; however, this is challenging since the number of temporal 
relations grow exponentially with the size of a TIRP in general, and also 
within the TIRP, which means seeking multiple relations for each sym
bolic time interval. For example, even between the third and fourth STIs 
there are already-three relations to ask about. This is impractical and 
unnecessary. Moreover, even for the symbols, it is not optional to query 
for all of them—only on the first, any intermediate, and the last. Typi
cally, the number of returned TIRPs is not large, and the user can choose 
the resulting TIRPs according to their temporal relations. 

3.1.3.2. Tabular view of TIRP results. To display the retrieved TIRPs, we 
first present the tabular view in Fig. 13 that was used as a baseline in our 
user study, and then the novel graph-based view. The tabular view is 
shown in Fig. 13a, in which each retrieved TIRP is presented in a row 
that contains its size, symbols, the temporal relations among them in a 
list, and the values of its metrics: vS MHS, or MMD (when the unified 

Fig. 9. The supporting entities of the selected TIRP at KLW–Explore. For a selected TIRP, the interface presents its visual mean presentation (b) and its supporting 
entities (c). Selecting a supporting entity will present the mean presentation of the TIRP of the selected entity (c) and each of the entity’s instances of that TIRP (d). 
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TIRP tree of the two populations is queried, the metrics are shown for 
each population separately, and the discriminative score). The number 
of the retrieved TIRPs is displayed above the table, and the table can be 
sorted by any of its columns. Pressing on a row (TIRP) of interest, 
Fig. 13b displays a visual presentation of the specific TIRP. Moreover, 
the “Explore TIRP” button in Fig. 13c will move the user to the KLW1- 
Explore component at the location of the selected TIRP in the TIRP 
enumeration tree in order to get more information on the selected TIRP, 
as described in KLW1-Explore. This option works the same on both 

query interfaces. 

3.1.3.3. Graphical view of TIRP results. In this study, we introduce a 
novel graph-based TIRP results view in which the TIRPs are presented on 
a two-dimensional bubble chart, and the axes represent their metric 
values as well as dot size and color depending on the use, as we intro
duce here. The use of the graph-based view is meaningfully different for 
single population querying, and when used for querying the unified 
TIRP tree of the two populations. 

Fig. 10. The two populations’ TIRP enumeration trees, at the top in blue or yellow (a and b), are unified into the unified TIRP tree, shown at the bottom (c). In the 
unified TIRP tree, TIRPs that appear only in one of the populations are in blue or yellow, and those that appear in both are in green. Note, a TIRP that appears only in 
one population (blue or yellow) doe mean that there are no instances of this TIRP in the other population, but rather that it is not above the minimal vertical support 
in that population. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.1.3.4. KLW1-query: one-population query interface. For the retrieval of 
TIRPs from a single population, the main requirement was to enable a 
good illustration of the TIRPs to be achieved based on their metric 
values. Fig. 14a presents the graphical view of the retrieved TIRPs 
presented by the bubble chart. 

Each bubble on the graph represents a TIRP that was found suitable 
according to the search query constraints. The y-axis represents the vS 
values, while the x-axis represents the MHS values, and each TIRP is 
located on the chart according to its vS and MHS values. In addition, to 
represent the TIRP’s MMD, each bubble (i.e., a TIRP) has a different 
color tone. Darker bubbles represent TIRPs that have longer MMDs. 

In addition, the number of the retrieved TIRPs, given the minimal vS 
is mentioned in the title of the graph. As a result, the distribution of the 
TIRPs can be seen on the axes based on their metric values. For example, 
it can be seen in Fig. 14a, that for the presented population, most TIRPs 
have a relatively low MHS, whereas some of the TIRPs have a relatively 
high MHS, but the frequency of these patterns (their VS) is low. As a 
result, it can be concluded that, in this population, patterns that repeat 
many times are rare, and most of the patterns occur one to three times on 
average. In addition, most of the dark TIRPs are located on the left, and 
as a result, it can also be concluded that TIRPs with a long MMD usually 
repeat a small number of times. 

Moreover, when the user detects a TIRP that he wants to explore, he 

can click on the bubble (TIRP) of interest, which will turn red upon 
selection. Fig. 14b displays a visual presentation of the TIRP with its 
metric values and STI MDs. 

3.1.3.5. KLW2-query: two-populations query interface. In the case of two 
populations, the graph-based presentation of TIRPs is different, mainly 
intending to easily illustrate the differences in TIRP appearance in the 
two populations. Thus, here, the main idea and novelty is in using each 
axis to represent one of the populations and to locate the TIRPs, as 
bubbles on the graph axes according to their metric values in each of the 
populations. Note, this is a different use of the axes than in the KLW1- 
Query, in which each axis is used for a different metric. Here, each 
axis is used for a different population, while both axes show the same 
metric, typically the vS. 

Fig. 15a presents the graphical bubble chart view for the results of 
the two populations’ query interface which queries the unified TIRP 
tree, in which each bubble on the graph represents a TIRP that is rele
vant to the query. The number of retrieved patterns appears in the graph 
title as well. However, as mentioned, the axes describe the vS of the 
TIRPs in each of the populations; thus, the y-axis represents the vS of 
each TIRP (i.e., its frequency) in one of the populations, and the x-axis 
represents the vS of each TIRP in the other population. Consequentially, 
TIRPs located on the graph’s diagonal have similar frequencies in both 

Fig. 11. KLW2–Explore: two population-based discriminative TIRP exploration, comparison, and visualization page. In the interface at level three of the unified tree 
showing a 3-sized TIRP, the dynamic table (a) presents the optional fourth symbol extensions of the current TIRP. The path in the tree till the current TIRP (also its 
sequence of symbols) is shown at the top (b). A visual illustration of the current TIRP along a timeline diagram with its STIs’ mean duration of each population is 
displayed (c). Its metrics’ values per population are shown informatively (d) and using charts (e, f, g), as well as some demographic data distribution of its supporting 
entities (h). 

Fig. 12. The query interface enables querying of TIRPs for their symbols, whether for a symbol that starts (a), is contained (b), or is at the end (c). In addition, it 
enables limiting their metrics’ values (d), including MHS, vS and TIRP size. 
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populations, while the TIRPs that are unique to either of the populations 
are at the top left or bottom right, having high frequency in one popu
lation and low frequency in the other. In addition, each bubble (i.e., 
TIRP) has a different color tone that represents the delta MMD (Defi
nition 10) of the TIRP among the populations. Darker TIRPs represent 
those whose difference in the MMD support among the populations is 
larger. Moreover, each bubble has a different size that represents the Δ 
MHS (Definition 9) of the TIRP among the populations. Larger bubbles 
represent TIRPs whose difference in the MHS among the populations is 

larger. 
Another dimension of each bubble is its border thickness. As can be 

seen in Fig. 15a, some bubbles have a bold border, whereas others do 
not. The thickness of the border of each TIRP is determined by whether 
the difference in the MHS or in the MMD between the populations is 
significant. 

In addition, the component in Fig. 15b allows a choice of which 
metrics (MHS or MMD) will affect the thickness of the border. For 
example, if the user wants only TIRPs with a significant difference in 

Fig. 13. The tabular view of the KLW1-Query interface results presented in a table (a), where each row represents a retrieved TIRP. A visual presentation of the 
selected TIRP with information about it is displayed next to the table (b). The “Explore TIRP” button (c) will move the user to the KLW1-Explore interface at the 
location of the selected TIRP in the TIRP enumeration tree in order to allow more information to be retrieved about the selected TIRP. Here, we have limited the 
query to retrieve only patterns whose symbols match the constraints (d, e, f) and whose mean horizontal support and size are greater than or equal to 2 (g). 

Fig. 14. The graphical view of the KLW1-Query results presented by a bubble chart (a), where each bubble on the graph represents a TIRP. The y-axis represents the 
vertical support of each TIRP (i.e., its frequency), and the x-axis represents its mean horizontal support. Each bubble (i.e., TIRP) has a different color tone repre
senting its MMD. Selecting a TIRP on the graph will change the bubble color to red, and a visual presentation of the TIRP with information about it will be displayed 
next to the graph (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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MHS between the populations to affect the thickness of the border, he 
can select only the MHS p-value check box so that bubbles with a bold 
border will indicate only patterns whose difference in the MHS metric 
between the populations is significant. In order to determine if the dif
ference in one of the metrics is significant, we performed a t-test that 
checked whether the difference in HS or MD values of the supporting 
entities of each TIRP in each population were significantly different. If 
the t-test resulted in a p-value that was lower than 0.05, the difference 
was considered significant. 

As mentioned, the main goal of the graphical view in Fig. 15a was to 
find discriminative TIRPs that are meaningfully different among the 
populations in the most efficient way. The graphical view emphasizes 
the difference in each of the patterns’ metric values among the 
populations. 

TIRPs that vary in their frequency between the populations are 
located at the top left or bottom right of graph, while those having a 
similar frequency appear on the diagonal. Moreover, TIRPs that differ in 
their MHS and their MMD between populations are large and darker, 
and if these differences are significant, they have bold borders as well. 

4. Evaluation 

We conducted a user study to evaluate the usability of the KLW 
interface. Usability was assessed in terms of the main usability criteria: 
effectiveness, efficiency, and satisfactionDis, i. [12], and in terms of its 
learnability (IEEE Std. 1061, 1998). Consequently, we evaluated the 
following research questions: 

1. Is the system usable for the KLW’s main tasks: navigation, explora
tion, comparison, and retrieval of the various patterns that were 
discovered among the populations?  

2. Will the graphical-based bubble chart view of the query interfaces 
improve system usability relative to the tabular view? 

4.1. Evaluation method 

4.1.1. Sample 
Twenty-five engineering students who had at least some familiarity 

with the concept of temporal patterns were recruited for the evaluation. 
Seventeen of them were undergraduate students, and eight were grad
uate students. The study included five female participants, and their 
average age was 27 (age range 20–35). Note that the intended users of 
the system are data scientists who may also be domain experts (e.g., 
physicians, researchers), however, who are familiar with both the 
concept of TIRPs and with the clinical domain problem and data. Hence, 
it is assumed that users will be able to acquire meaningful temporal 
knowledge and insights, once they find it. Therefore, the evaluation 
focused on the usability of the KLW’s interface in accessing the relevant 
information, and whether such users can effectively and efficiently use 
the system to their satisfaction. 

4.1.2. Training 
To acquaint the participants with the KLW interface, they watched 

two instructional videos lasting half an hour each, before interacting 
with the system. The first video1 explained the concept of temporal data, 
temporal abstraction, and TIRP mining with its output – the frequent 
enumeration TIRP tree (see Fig. 4). 

The second video2 presented the main features of the KLW interface. 
These included navigation in the frequent enumeration TIRP tree to 
specific TIRPs, an explanation of the various components that showed 
the metrics of the TIRPs, and instruction on the various query interfaces. 
In addition to watching the instructional videos, the participants 
experimented with the system by performing three navigation tasks in 
which they looked for specific patterns. 

We gave the participants the option to continue exploring the system 
beyond the three practice navigation tasks to gain more confidence 
before starting the questionnaire. However, all participants chose to 

Fig. 15. The graph-based KLW2-query interface presents the query results in a bubble chart (a), where each bubble on the graph represents a TIRP. The x- and y-axes 
represent the vertical support of each of the populations of the TIRPs (i.e., their frequency). Each bubble is a TIRP, and beyond is its location determined by its 
vertical support in each of the populations. Its size represents its delta mean horizontal support, and its color tone its ΔMMD, both among the populations. Having a 
bold border means that the difference in the horizontal support values, or in the MD values (b), in the populations is significantly different. 

1 https://www.ise.bgu.ac.il/cdalab/video/KL_and_TIRPs.mp4.  
2 https://www.ise.bgu.ac.il/cdalab/video/KLW_Introduction.mp4. 
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start the questionnaire directly after the three tasks. Following the 
practice, all participants rated the level of ease of use of the KLW system 
as 3 or 4 on a 0–4 scale (4 = very easy to use). 

4.1.3. Datasets 
In order to perform the user study and evaluate the use of the novel 

pattern visualization of the KLW, we needed datasets that included two 
populations for the KLW2, while for the KLW1, either one of the pop
ulations or the entire set of two populations was sufficient. For that, two 
datasets from the Intensive Care Unit domain were used, focusing on the 
prediction of two types of outcomes: Sepsis and Acute Hypertensive 
Episode (AHE). Both datasets were created based on the MIMIC data
base, and each was created using case controls relative to an earlier 
event. In both datasets, the earlier event, in our case, was the time of 
admission to the ICU. Two types of patients that constructed the classes 
existed in the datasets. The first class, the cohort, included patients who 
had the outcome in their records, whereas the second class, the controls, 
included patients who did not have the outcome in their data. The 
classification task was to predict, based on a fixed time duration relative 
to the admission, whether the patient would or would not have the 
outcome during their stay. 

The study data were acquired from the publicly available Medical 
Information Mart for Intensive Care (MIMIC)-III version 1.4 dataset 
[20]. It comprises over 53,423 ICU stays for more than 40,000 patients 
admitted to the Beth Israel Deaconess Medical Center (BIDMC) in Bos
ton, MA, between 2001 and 2012. The database contains data from two 
different critical care information systems: Care-Vue (Philips) and 
Metavision (iMDSoft), from 2001 to 2008 and 2008 to 2012, 
respectively. 

4.1.3.1. Sepsis. A repository was built for the analysis of ICU-acquired 
sepsis identification methods in an electronic health records database 
[20], that was used for the identification of the case-patients and 
outcome onset time within the MIMIC database. We used 1,240 entities 
from each class: cohort and controls. A single time-window from each 
entity was taken, where each time-window duration was 12 h. The 
median age of the cohort was 65, of whom 59.3 % were men with a 
median ICU length of stay of 11.6 days. The median age of the controls 
was 66, of whom 54.1 % were men with a median ICU length of stay of 
3.3 days. 

4.1.3.2. Acute Hypertensive Episode (AHE). AHE is a long-term medical 
condition in which severe elevations in blood pressure are likely to cause 
damage to one or more organ systems. In this dataset, we used 
600 entities from each class: cohort and controls. From the cohort, a 
single time-window from each entity was taken, and from the controls, 
five time-windows from each entity were taken. 

Here, each time-window duration was 6 h. The median age of the 
cohort was 67, of whom 57.66 % were men with a median ICU length of 
stay of 4.56 days. The median age of the controls was 66, of whom 
57.21 % were men with a median ICU length of stay of 3.24 days. 

Both datasets were mined using the KarmaLego algorithm to discover 
the frequent pattern tree of each population, i.e., class (cohort or con
trols). The minimum vS threshold that was used was 10 %. After the 
frequent pattern trees for each class were discovered, they were unified 
into a unified tree (see Fig. 10) to allow for the KLW2 components. 

4.1.4. Procedure 
Due to social-distancing restrictions during the coronavirus 

outbreak, the user study was conducted online via Zoom. Each partici
pant was scheduled for an online session that lasted about an hour, in 
which they completed a series of tasks. The study had two parts of 20 
tasks each, and the tasks in both parts were structurally equivalently. All 
users performed the tasks on the Sepsis dataset first and then on the AHE 
dataset. Following each task, participants rated the ease of performing 

it. As mentioned in Section 3.1.3, the results in each of the KLW’s query 
interfaces (KLW1-Query and KLW2-Query) can be presented in two 
views: graphical (using a bubble chart) and tabular. To compare the 
usability of these views, the tasks for both views were the same. The 
order in which the views were presented was counterbalanced across 
participants. Half of the participants started with three tabular view 
tasks and then continued with three graphical view tasks, while the 
other half were presented with the opposite order. 

4.1.5. Evaluation metrics and dependent measures 
Per the conventional practice in usability evaluations, the dependent 

measures included three elements: effectiveness, measured as the per
centage of correct answers (each answer was classified as 1 if it was 
answered correctly and 0 otherwise); efficiency, measured in terms of 
time to complete the tasks (in seconds); and a subjective component, 
operationalized as ratings of the ease in which each task was completed 
on a 5-point scale (0 = very difficult, 4 = very easy). 

4.1.6. Study design 
The study included four types of tasks (see task details in Appendix 

3): general, navigation, tables, and graphs. General tasks were per
formed on two system components: KLW1-Explore and KLW2-Explore 
(Sections 3.2.1 and 3.2.2, respectively). The first four general tasks 
were performed on KLW1-Explore, while a single navigation task and 
additional three general tasks were performed on KLW2-Explore. 

The latter 12 tasks involved presenting data in response to queries by 
either tabular or graphical formats. These tasks were performed on the 
system’s query components (six one population tasks on the KLW1- 
Query and another six on the KLW2-Query). 

Table tasks were conducted on the table view interface of KLW1- 
Query and KLW2-Query, and graph tasks were conducted on the 
graphical view interface of these components. The KLW1-Query 
included tasks that required finding patterns in one population accord
ing to their metrics and symbols. The KLW2-Query tasks required 
finding the patterns that had the greatest distinguishing power between 
two classes. 

5. Results 

We evaluated the participants’ performance in terms of effectiveness 
(i.e., accuracy), efficiency (execution time), and subjective ease of per
forming the tasks. We performed separate analyses for the first eight 
tasks (general and navigation) and for the latter 12 tasks (one-popula
tion and two-population queries). 

5.1. General and navigation tasks 

For these tasks, we performed a two-way repeated measures ANOVA 
with dataset (first or second) and task type (general vs navigation) as the 
independent factors. 

Accuracy. The answer to each task was classified as 1 if correct and 
0 otherwise. Task accuracy was very high (M = 0.98, S.D. = 0.11). None 
of the independent variables including their interaction had a significant 
effect on task accuracy (see ANOVA Table 1.1 in Appendix 1). 

Task duration. Average task duration was 36.1 s (S.D. = 33.3). Only 
task type had a significant main effect on task duration (F = 4.09, 
df = 1,24, p = 0.05, see ANOVA Table 1.2 in Appendix 1). 

The navigation task (M = 37.8 s, S.D. = 34.7) was on average 
significantly slower than the general tasks (M = 31.2 s, S.D. = 20.1 s). 
There was no main effect for dataset (p = 0.51) or for the interaction of 
task type with the dataset (p = 0.08). 

Subjective ease of task performance. Subjective reports of ease of 
task completion were high (M = 3.57, S.D. = 0.77, on a 0–4 scale). The 
only statistically significant effect on the ease of task execution was by 
dataset (F = 11.76, df = 1,24, p < 0.001, see ANOVA Table 1.3 in Ap
pendix 1). Completing tasks of the second dataset (M = 3.7, S.D. = 0.66) 
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were perceived as easier than tasks of the first dataset (M = 3.55, S. 
D. = 0.01). This finding is to be expected due to the experience partic
ipants gained with the system. However, it should be noted that even the 
first dataset’s tasks were perceived as easy to complete. There was no 
main effect of task type and no interaction effect (p = 0.06 and 0.07, 
respectively). 

In conclusion, we found that performance on the general and navi
gation tasks was effective and quite efficient. A small improvement was 
felt for subjective ease of task performance due to experience in system 
usage, albeit initial ratings on this measure were high to begin with. 

5.2. Query tasks using tabular and graphical-based bubble chart views 

For each KLW1-Query and KLW2-Query, we performed a two-way 
repeated measures ANOVA on the query tasks, with view (table vs 
graph) and dataset (first or second) as within-subjects factors. 

5.2.1. KLW1-Query results 
Accuracy. Task accuracy was very high (M = 0.96, S.D. = 0.17). We 

found no main or interaction effect on accuracy, perhaps due to a ceiling 
effect (see ANOVA Table 2.1.1 in Appendix 2 and Tables 2.1.4–2.1.6 in 
Appendix 2). 

Task duration. Average task duration was 44.29 s (S.D. = 28). 
Fig. 16 shows the mean and the 95 % confidence interval of task dura
tion broken down by dataset and view. 

The dataset had a significant (F = 5.16, df = 1,24, p = 0.03) effect on 
task duration (see ANOVA Table 2.1.2 in Appendix 2 and 
Tables 2.1.4–2.1.6 in Appendix 2). The mean duration of the first dataset 
(M = 46.8 s, S.D. = 30.6) was significantly higher than the MD of the 
second dataset (M = 41.8 s, S.D. = 25.0). View type did not have a 
significant effect, nor was there an interaction effect (p = 0.79 and 0.89, 
respectively) on task duration. 

Subjective ease of task performance. Mean perceived ease of task 
execution was high (M = 3.42, S.D. = 0.79, see Fig. 17), although 
somewhat lower than that of the first eight tasks. Here, again, the only 
significant effect was associated with dataset (F = 9.06, df = 1,24, 
p = 0.01; see ANOVA Table 2.1.3 in Appendix 2 and Tables 2.1.4–2.1.6 
in Appendix 2). The 12 queries on the second dataset (M = 3.53, S. 
D. = 0.72) were significantly easier to perform than those on the first 
dataset (M = 3.31, S.D. = 0.86). There was no main effect of view type 

and no interaction effect (p = 0.74 and 0.52, respectively). 

5.2.2. KLW2-Query results 
Accuracy. The participants were less accurate in this part of the 

system relative to the one-population part (M = 0.86, S.D. = 0.34, see 
Fig. 18). View type had a significant effect on task accuracy (F = 12.83, 
df = 1,24, p < 0.001; see ANOVA Table 2.2.1 in Appendix 2 and 
Tables 2.2.4–2.2.6 in Appendix 2). The accuracy of the graph view 
(M = 0.96, S.D. = 0.2) was significantly higher than the accuracy of the 
table view (M = 0.77, S.D. = 0.42). There was no main effect for dataset 
(p = 0.43) or for the interaction of view type with dataset (p = 0.6). 

Task duration. On average, the participants completed each task in 
52.6 s (S.D. = 48.5, see Fig. 19). Tasks took somewhat longer to com
plete than tasks in the KLW1-Query module, a result that reflects the 
higher complexity of comparing two populations versus finding infor
mation in one population. The dataset had a significant (F = 56.53, 
df = 1,24, p < 0.001) effect on task duration (see ANOVA Table 2.2.2 in 

Fig. 16. The mean and confidence interval task duration of the factors: dataset 
and view type. The mean duration of the first dataset was significantly higher 
than the MD of the second dataset and View type did not have a signifi
cant effect. 

Fig. 17. The mean and confidence interval task level of ease of the factors: 
dataset and view type. The tasks on the second dataset were significantly easier 
to perform than those on the first dataset. 

Fig. 18. The mean and confidence intervals of the task accuracy of the factors: 
dataset and view type. The accuracy of the graph view was significantly higher 
than the accuracy of the table view and Dataset did not have a significant effect. 

G. Shitrit et al.                                                                                                                                                                                                                                   

Isr
ael

-U
S BIR

D Fou
nd

ati
on



Journal of Biomedical Informatics 134 (2022) 104169

16

Appendix 2 and Tables 2.2.4–2.2.6 in Appendix 2). The query tasks on 
the first dataset (M = 70.4 s, S.D. = 59.2) took considerably longer than 
the durations on the second dataset (M = 34.8 s, S.D. = 23.89). There 
were no significant effects of view type or of the interaction on task 
duration (p = 0.08 and 0.07, respectively). 

Subjective ease of task performance. Participants felt that the 
KLW2-Query tasks were not as easy as the other tasks (M = 2.62, S. 
D. = 3.0, see Fig. 20). There were statistically significant main effects of 
dataset and type of view (F = 19.27, df = 1,24, p < 0.001, and F = 11.03, 
df = 1,24, p < 0.001, respectively) on perceived ease of task perfor
mance (see ANOVA Table 2.2.3 in Appendix 2 and Tables 2.2.4–2.2.6 in 
Appendix 2). Again, the users felt that it was more difficult to carry out 
tasks in the first dataset (M = 2.28, S.D. = 1.33) than in the second 
dataset (M = 2.97, S.D. = 1.27). Graph-view tasks were perceived as 
more difficult than table-view tasks (M = 2.39, S.D. = 1.34, compared to 

M = 2.85, S.D. = 1.31, respectively). This result may be explained by the 
fact that a bubble chart is not a familiar view and, therefore, it is harder 
to use. There was no interaction effect (p = 0.42). 

6. Discussion and conclusions 

The use and advantages of temporal abstraction and TIRPs mining 
for longitudinal data analysis, and specifically in EHR data, has already 
been demonstrated for several tasks, such as classification and outcomes 
prediction [35]. Among its advantages is the potential explainability 
through the TIRPs. Explainability is an important capability in data 
science, specifically in the biomedical domain, since it is important to 
explain the models to domain experts, and also for knowledge acquisi
tion. However, the exploration of TIRPs is challenging, and requires 
efficient and effective visualization of the discovered patterns, which is a 
relatively understudied research field. 

This paper introduced KLW, a novel visual interface designed to 
support the exploration of TIRPs that were discovered within a single or 
two populations of entities (i.e., patients). The interface introduces 
several main visualizations: KLW1-Explore, which focuses on explora
tion of TIRPs that were discovered from a single population of entities, 
while the second visualization, KLW2-Explore, focuses on TIRPs that 
were discovered in two populations of entities. Similarly, another type of 
visualization focuses on query and retrieval of TIRPs, KLW1-Query and 
KLW2-Query, which enable an efficient query and retrieval of TIRPs that 
were discovered given a criteria defined by a user, and the results are 
displayed using a bubble chart which is one of the most novel contri
butions of the paper. 

The main contributions of the paper can be summed in three. First 
deals with the problem of visualization of an enumeration tree of pat
terns. While we refer to TIRPs, the approaches introduced in this paper 
can be generalized and used also for other types of patterns, whether 
temporal patterns, such as sequential patterns, or even generally pat
terns, such as item sets. The main challenge is the ability to navigate in a 
tree structure, while presenting the information about a TIRP, and the 
various metrics, so the user can browse the patterns and decide where to 
delve in according to various aspects. Moreover, there is an illustration 
of the current TIRP and what are its extensions. Second is the use of a 
bubble chart to display efficiently the group of relevant TIRPs for a given 
search criteria, in a multidimensional view, which by customizing the 
meaning of the bubble chart axes, and the bubbles’ color tone and size, 
to the various metrics of a TIRP (i.e., vS MHS, MMD) enables to focus fast 
on the TIRPs of interest. Moreover, it gives a larger picture of the 
discovered TIRPs distribution according to the TIRPs’ metrics. For 
example, whether most of the TIRPs have high vS or low MHS and cet. 
Again, such visualization can be used also for other types of temporal 
patterns, and even generally patterns. The third is the visualization of 
TIRPs in two populations. This is a completely novel topic that was not 
touched in the existing literature. It allows to compare two populations, 
whether coming from a classification problem, or just two populations of 
patients according to different criteria, based on their TIRPs. Thus, it 
allows to identify which TIRPs have different presence in the two pop
ulations, both looking at the TIRPs as a whole and their distribution 
along the various metrics, and also accessing efficiently specific TIRPs of 
interest and getting their information in both populations. These three 
novel topics have meaningful implications in the ability to explore and 
investigate TIRPs in a single or two populations, and even used in any 
other types of temporal patterns, or even generally pattenrs, and in that 
respect the contributions here are much more meaningful. 

More specifically, KLW1-Explore enables a user to browse and 
navigate in the TIRPs tree by navigation according to the TIRPs’ prop
erties or metrics, in a single population. This allows the patterns, along 
with their metrics, to be visualized, facilitating their exploration, and 
demonstrating demographic data distribution of the supporting entities 
of each TIRP in order to gain more knowledge about the discovered 
patterns. Similarly, KLW2-Explore enables exploration of each TIRP, 

Fig. 19. The mean and confidence intervals of the task duration of the factors: 
dataset and view type. The tasks on the first dataset took considerably longer 
than the durations on the second dataset and there were no significant effects of 
view type. 

Fig. 20. The mean and confidence interval task level of ease of the factors: 
dataset and view type. There were significant main effects of dataset and type of 
view. The tasks on the second dataset were significantly easier to perform than 
those on the first dataset and the Graph-view tasks were perceived as more 
difficult than table-view tasks. 
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along with that TIRP’s metrics in two populations KLW1-Query and 
KLW2-Query support the ability to find TIRPs by querying for specific 
patterns that were discovered in a single population or in two pop
ulations. However, the current proposed interfaces are limited to the 
comparison of two populations, and not more, which may be needed 
when there are multiple populations that are investigated which we 
intend to explore and address in our future work. Additionally, we 
would like to enable to visually navigate through the TIRPs, based on the 
symbolic time intervals sequences to explore what leads to an event of 
interest, or what are the paths that can be followed by an event of in
terest. This requires a hole new thinking that we intend to do in the 
future. 

To support the presentation of the queries’ results (i.e., the retrieved 
patterns) both tabular and graphical views were implemented. to enable 
a data scientist or domain expert to analyze the data through the TIRPs 
and acquire knowledge Moreover, an additional contribution of the tool 
enables to characterize the TIRP’s supporting population by their 
demographical variables’ distribution, such as for example gender, age 
group, and other relevant properties, depending on the domain problem. 
This creates the ability to identify accordingly a TIRP that describes a 
“behavior” of a sub population along time, such as reaction to a treat
ment, or the sequence of their variables along time. 

Finding patterns that are discriminative in two populations may 
explain differences in two populations, for example, of patients who 
have a specific outcome, or not, or the differences between a population 
that recovers, or not, based on their “behavior” along time. This can be 
achieved by the two-population exploration tools. Thus, if scientists are 
interested in TIRPs that have a higher frequency in one population, 
compared to another, they can look at the chart’s bottom right or top 
left. Additionally, based on the metrics, especially the delta metrics, it is 
easy to explain why a TIRP is of interest. Once such TIRPs are identified, 
they can then be used for knowledge discovery – to understand how the 
data evolves along time, and in order to use these TIRPs in an actionable 
way to classify or to predict outcomes. 

We conducted a user study to evaluate the visual interfaces, in which 
participants performed various pattern-finding tasks. The interface was 
evaluated in terms of three central usability dimensions: effectiveness (i. 
e., accuracy), efficiency (i.e., performance time), and subjective evalu
ation (perceived ease of task performance). We found that the interface 
enabled users to perform tasks in the context of exploring patterns and 
comparing them between populations, navigating between the different 
patterns, and searching for discriminative patterns. Most of the tasks 
were performed accurately, quickly, and easily. However, the popula
tion of users in the study were engineering students, and not clinicians, 
which is a limitation of the study in some extent, since they represent 
well potential data scientists, but not clinicians, who may be interested 
in using the tool. Note that such interfaces are expected to be used by 
data scientists, epidemiologists, or physicians who are scientists, and in 
practice are data scientists as well. Nevertheless, these interfaces can be 
used by clinicians without formal data science experience. 

Users were able to learn how to use the system by watching two 
video tutorials. They reached satisfactory accuracy levels beginning 
with their first experience with the system (the first dataset), and per
formance time and their satisfaction was improved with the second 
experience (the second data set). 

Query results were returned to the participants in a familiar tabular 
format and an unfamiliar (novel) bubble chart format. We found no 
outcome differences between the tabular and graphical interfaces in the 
one-population queries. However, interesting differences were observed 
for the more complex two-population queries. In that condition, the use 
of the graphical interface improved the accuracy relative to the use of 
the tabular interface, yet time duration was shorter and satisfaction was 
higher in the use of the tabular interface. These findings suggest a 
speed–accuracy tradeoff and incongruence between users’ effectiveness 
and their self-reported ease of use. Evidently, the users either did not 
appreciate the contribution of the bubble chart to their performance, or 

were not aware of not being accurate, when using the tabular repre
sentation. Consequently, future implementations of KLW should come 
with clear indications to users about the advantages of the bubble-chart 
visualization and with recommendations regarding the benefits of using 
it instead of quickly coming to conclusions based on information pre
sented in the tabular format. We intend to incorporate the KLW in
terfaces for visualization of TIRPs discovered from a single population, 
or two populations within a framework that will enable a data scientist 
to upload and abstract a dataset, and to mine and visualize TIRPs. 
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