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Abstract— We study the problem of localizing sources of un-
known forced inputs in linear dynamical systems with unknown
system matrices. This problem is relevant in several real-world
dynamical systems, including power networks and mechanical
systems, where the unknown inputs could be forced oscillations
or malicious attacks. Localizing sources is key to mitigating the
impact of these unwanted inputs on the system’s performance.
To this aim, we develop an algorithm that finds sources based on
the modal information in the inputs. We obtain this information
from the eigenvalues of the (sampled) system matrices, which we
estimate using a subspace identification method. Importantly,
our algorithm relies on a key assumption that inputs can be
appropriately modeled as outputs of some latent linear systems.
This assumption allows us to go beyond periodic inputs that
are a mainstay in the literature of source localization problems.
We illustrate our findings via multiple numerical studies.

I. INTRODUCTION

Real-world engineered systems are often subject to multi-
ple types of disturbances. If the disturbance is small enough
and does not trigger the natural modes of the system, then
feedback controllers are robust enough to ensure the system’s
stability or operate near the equilibrium point. However, cer-
tain disturbances, such as the harmonic disturbances injected
by malfunctioned controllers, malicious inputs injected by
adversaries, or cyclic errors in sensors, might not be small
in magnitude. In such scenarios, feedback controllers in the
system may not be sufficient to protect against the impact
of these disturbances, thus requiring disturbance mitigation
using other techniques.

A simple and practical method to mitigate the disturbances
(henceforth referred to as forced inputs) is to find the location
of the sources injecting these inputs and disconnecting them.
This method is known as source localization [1], [2], [3], [4].
Detecting unknown inputs using measurements is straightfor-
ward if the input is present for sufficiently long enough. Sev-
eral methods exist in the literature discussing various kinds
of detection algorithms (see [5] and the cited references). In
contrast, localizing sources is a difficult problem because we
need to determine the true sources using measurements, with
or without the knowledge of the system model.

On the one hand, when the system model is known, the
source localization problem can be cast as an unknown input
reconstruction problem (also referred to as input deconvolu-
tion or forced input reconstruction, [6], [7]). Additionally, if
the sources are sparse (i.e., among all possible sources only
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a few sources inject inputs), we then can find the locations
of the true sources using sparsity-constrained unknown batch
or sequential estimators; see, for sample, [8], [9], [10]. On
the other hand, when the system model is known to belong
to a certain model class (e.g., linear or affine systems) with
unknown parameters, sources are localized using Discrete
Fourier Transform (DFT) methods [2], [11], [12].

While system operators prefer DFT methods coupled
with spectral peak-picking and thresholding, these methods
have many disadvantages. First, DFT analysis is sensitive to
spectral leakage and sensor noise, and hence, the resulting
localization algorithms are inefficient. Second, DFT methods
are not convenient for estimating system parameters, such as
system matrices of linear dynamical systems. These matrices,
for instance, help develop signal filters for input cancellation.
However, identification methods based on state space models
provide a better numerical alternative to DFT methods, both
for model identification and source localization [13].

Assuming a latent model for inputs, we develop a state-
space model-based subspace identification method to localize
the sources using measurements. We employ a state-space
model for developing the method, but we do not assume the
parameters of the state-space model. Thus, our identification
method falls under the category of model-based data-driven
methods and is useful where one needs to localize the sources
and estimate system models. Further, the subspace method
provides appropriate observability and minimality conditions
necessary to estimate the system matrices. Consequently, we
can use these conditions to enforce observability by adding
more sensors if needed.

We summarize our key contributions below.
(i) For a continuous-time linear dyamical system with n

states and m inputs, we model each input as an output
of a zero-input latent linear dynamical system with one
output and an arbitrary number of latent states. This
model allows us to capture a large class of external
disturbances injected into physical systems.

(ii) Under the above assumptions, we propose a determin-
istic subspace model identification method to jointly
estimate the matrices of the (sampled) linear system
and also the sources of the locations (that is, the inputs
with non-zero entries). Our method involves solving a
simple least squares problem using data collected over
a time horizon. We also formally state conditions under
which our method correctly identifies the sources.

(iii) We validate the performance of our identification al-
gorithm on a benchmark power system for two cases:
purely sinusoidal inputs and non-sinusoidal inputs.
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The rest of the paper is organized as follows. In Section II,
we introduce the system model. In Section III, we present the
subspace identification method and propose an algorithm to
localize the sources in Section IV. In Section V, we provide
simulation results. In Section VI, we summarize our paper
with future directions.

II. SYSTEM DYNAMICS UNDER FORCED INPUTS

Consider the continuous linear time-invariant system ex-
cited by unknown external forced inputs:

ẋ(t) = Acx(t) +
m∑
i=1

biui(t),

y(t) = Ccx(t), ∀t ≥ 0,

(1)

where x(t) ∈ Rn is the state vector and y(t) ∈ Rp is the
output vector. The system is parametrized by matrices Ac ∈
Rn×n and Cc ∈ Rn×p, and vectors bi ∈ Rn for all i ∈
{1, . . . ,m}. In (1), without loss of generality, we set the
known inputs to zero. We give concrete examples of real-
world systems described by (1) in the simulations section.

We assume that the scalar input ui(t) injected by the i-th
source is given as the output of the following latent system:

żi(t) = Aizi(t) and ui(t) = pT
i zi(t), (2)

where Ai ∈ Rni×ni and pi ∈ Rni , and zi ∈ Rni is the latent
state. From (2), note that ui(t) = pT

i exp(Ait)zi(0). So
ui(t) is completely determined by the tuple (Ai, zi(0),pi).
In Example 1, we construct a tuple (Ai, zi(0),pi) whose
system’s response can be used to generate sinusoidal inputs..
Finally, except for y(t), we assume no knowledge of the state
vectors, and system matrices and vectors.

Example 1: (Sinusoidal Inputs [14]) Let r be a positive
integer. Define p1 =

[
1 0 1 0 . . . 1 0

]T ∈ R2r and
the latent state vector with alternating sine and cosine terms:

z1(t) ≜


a1 sin(w1t+ ϕ1)
a1 cos(w1t+ ϕ1)

...
ar sin(wrt+ ϕr)
ar cos(wrt+ ϕr)

 ∈ R2r. (3)

Finally, we define A1 as follows:

A1 =



[
0 w1

−w1 0

]
. . . [

0 wr

−wr 0

]
 . (4)

Then u1(t) ≜
∑r

i=1 ai sin(wit+ϕi) can also be obtained us-
ing the formula pT

1 exp(A1t)z1(0). This is because ż1(t) =
A1z1(t), for A1 and z1(t) in (3) and (4) ■

The latent linear system in Example 1 produces a periodic
signal with r sinusoidal components. Interestingly, even for
r = 1, we need a two-dimensional latent state vector
(see (3). However, to model external forced inputs beyond

decaying or sustained sinusoids, we should consider arbitrary
(Ai, zi(0),pi). We explore these inputs in simulations.

Using the actual system in (1) and latent systems in (2),
we consider the following augmented linear system:

ẋ(t)
ż1(t)

...
żm(t)

 =


Ac b1p

T
1 . . . bmpT

m

0 A1 . . . 0
...

...
. . .

...
0 0 . . . Am


︸ ︷︷ ︸

Afull


x(t)
z1(t)

...
zm(t)


︸ ︷︷ ︸

xfull(t)

, (5)

y(t) = Cxfull(t), (6)

where C = [Cc,0, . . . ,0]. If ui(t) = pT
i (t)zi(t) ̸= 0, the

i-th source is active. Otherwise, the source is not active.
We assume that sensors record measurements at discrete

time instants. Thus, we sample (1) with the sampling period
T . Let Ad = exp(AfullT ); then Ad ∈ Rñ×ñ with ñ =
n + n1 + . . . + nm, where n is the dimension of x(t) and
ni is the dimension of zi(t). Define xd[k] ≜ xfull(kT ) and
y[k] ≜ y(kT ), where k = 0, 1, . . .. Then

xd[k + 1]=Adxd[k] and y[k]=Cxd[k] (7)

describe the sampled model of (1).
The goal of source localization problem is to find indices

of ui[k] ≜ ui(kT ) ̸= 0 from y[k], collected over a time
window. However, in (7), ui[k], for every i ∈ {1, . . . ,m} is
implicitly defined through the unknown state xd[k] and the
augmented matrix Ad. In what follows we show that the non-
zero input sources can be identified using the eigenvalues of
Ad. In Section III we describe a procedure to estimate eigen-
values. Suppose that the system in (5) and (6) is minimal (i.e.
if there are no pole-zero cancellations). Then the eigenvalues
of Ad can be obtained using the map λ → eλT , where λ
is the eigenvalue of Ac. The assumption below states that
knowing eigenvalues is equivalent to knowing the sources.

Assumption 2.1: Let spec(·) be the set of eigenvalues.

(i) spec(Ai) is known and the system in (2) is minimal.
(ii) spec(Ac) ∩ spec(Ai) ∩ spec(Aj) = ϕ for any i, j ∈

{1, . . . ,m} where i ̸= j. ■

Assumption 2.1(i) is justified by the fact that the system
operator is aware of the modes of the input ui(t) = pT

i z(t)
injected by an internal device (for e.g., controller). Further,
the minimality assumption guarantees that the modes of ui(t)
are equivalent to spec(Ai). This assumption does not imply
that the system operator knows the sources of the active in-
puts. Rather this assumption implies that the system operator
can identify the source of the input (e.g., malfunctioned or
corrupted device) once the modal information is obtained.

Assumption 2.1(ii) is a necessary identifiability condition
for localizing the sources using the eigenvalues. Specifically,
if Assumption 2.1(ii) is violated, we cannot localize active
sources using eigenvalues. Finally, we emphasize that we do
not assume any knowledge of (Ac,Cc). Thus, our method
can localize sources in systems with unknown matrices.
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III. SUBSPACE MODEL IDENTIFICATION

In this section, we develop results on state-space subspace
model identification for the deterministic sampled system in
(7). This material is fairly standard and our exposition is
based on [15], [16]. We then use these results to develop an
algorithm to identify the source locations in Section IV.

By invoking (7), we can establish the following mapping
between the state xd[k] and the measurements {y[k]}s−1

k=0:
y[k]

y[k + 1]
...

y[k + s− 1]

 =


C

CAd

...
CAs−1

d


︸ ︷︷ ︸

≜Os

xd[k]. (8)

Let ñ < s ≪ N , where ñ = n + n1 + . . . + nm is the
dimension of Ad in (7). Consider the following block Hankel
Matrix constructed using {y[k]}N−1

k=0 :

Yo,s,N =


y[0] y[1] . . . y[N − s]
y[1] y[2] . . . y[N − s+ 1]

...
...

. . .
...

y[s− 1] y[s] . . . y[N − 1]

 . (9)

Substituting the relation (8) in (9) for different time shifts,
yields the following data equation:

Yo,s,N = Os

[
xd[0] xd[1] . . . xd[N − s]

]︸ ︷︷ ︸
≜X0,N

. (10)

The essence of subspace identification methods is esti-
mating system matrices using the Hankel matrix in (9) using
factorizations similar to the one described in (10). In our
case, to estimate (Ad,Cc) using Yo,s,N , we begin with the
following assumption:

Assumption 3.1: rank(X0,N ) = ñ and rank(Os) = ñ. ■

Assumption 3.1 ensures that the rank of Yo,s,N equals ñ.
Thus, range(Yo,s,N ) = range(Os) (here range(·) means the
column space of the matrix). This identity allows us to use
the left singular vectors of Yo,s,N as basis vectors for Os to
estimate (Ad,C) up to an unknown similarity transformation
matrix T. We give high-level details of this method below.
For a leisurely derivation, we refer the reader to see [16].

Consider the following SVD of Yo,s,N :

Yo,s,N =
[
Uñ Unoise

] [ Σñ 0
0 Σnoise

] [
VT

ñ

VT
noise

]
(11)

with Σñ ∈ Rñ×ñ, rank(Σñ) = ñ, and Σnoise = 0 (follows
from the fact that the rank of Yo,s,N = ñ and that there is
no noise). Because the column spaces of Yo,s,N and Os are
equal, there exist a matrix T such that UñT

−1 = Os. Thus,

Uñ = OsT =


CT

CT(T−1AdT)
...

CT(T−1AdT)s−1

 =


CT

CTAT

...
CTA

s−1
T

 ,

(12)

where CT = CT and AT = T−1AdT. The second equality
follows by substituting Os defined in (8). Finally, note that
T is nonunique.

From (12), we note that CT is given by the first p rows
of Uñ; that is, CT = Uñ(1 : p, :) (we follow the convention
of MATLAB to denote rows and columns). The matrix AT

can be estimated using the shifting property of Os. Indeed,
note the following identity from (12):

Uñ(1 : (s− 1)p, :)AT = Uñ(p+ 1 : sp, :). (13)

Because s>n, the matrix AT can be determined from the
overdetermined equations above. We can obtain AT as

AT = (Uñ(1 : (s− 1)p, :))+Uñ(p+ 1 : sp, :), (14)

where (·)+ denotes the Moore-Penrose pseudo inverse.
Because T is non-unique there exist infinitely many pairs

(AT ,CT ), parameterized by T, that can describe the dy-
namics of (7). Specifically, all these pairs give rise to the
same measurements. Nonetheless, for any T, the eigenvalues
of Ad and AT given in (14) are the same. This is because
eigenvalues are invariant under similarity transforms. We use
this fact to develop our source localization algorithm.

IV. SOURCE LOCALIZATION VIA ESTIMATED
EIGENVALUES

In this short section, we describe our source localization
algorithm using the matrix AT in (14).

First, we make a mild technical assumption: let λ = s+jω
and ρ = s+jϕ be any two eigenvalues of Ai and Ak in (2),
respectively, for all i, k ∈ {1, . . . ,m}. Then, ω and ϕ are
not integral multiples of 2π/T . This assumption along with
Assumption 2.1 (ii) ensures that the eigenvalues exp(λT )
and exp(ρT ) of AT are different. Second, we assume that
the augmented system dimension ñ is known (see below for
details on estimating ñ). Third, because Afull in (5) is block
triangular, the eigenvalues of the ith latent system in Ad in
(7) can be obtained as exp(λ(Ai)T ).

With the above observations in place, define the informa-
tion set I = ∪m

i=1Ii, where Ii = {eλki
(Ai), . . . , eλni

(Ai)}.
We can now uniquely locate sources using the eigenvalues
of AT . We detail the steps in the joint model identification
and source localization method in Algorithm 1.

Algorithm 1: Source localization via measurements.
Input: System order (ñ), integers s and N such that

N > s > ñ, measurements {Y[k]}N−1
k=0 , and

the set of eigenvalues I = ∪m
i=1Ii.

Step 1: Construct the block Hankel matrix Y0,s,N in
(9) using the measurements {Y[k]}N−1

k=0 .
Step 2: Compute the SVD of Y0,s,N and obtain Uñ

as described in (11).
Step 3: Obtain AT using (14) and its eigenvalues λ̂d.
Step 4: Flag sets Ii whose eigenvalues matches with

any one of the estimated quantities λ̂d.
Return: Sources corresponding to the eigenvalues λ̂c.
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Fig. 1: Three generator, nine bus system [17]. The forced inputs
enter the system through Gen2 and Gen3.

V. SIMULATIONS

We apply Algorithm 1 to localize sources of forced inputs
in a three-generator, nine-bus system shown in Fig. 1. The
generators are connected to nine network buses (numbered
vertical and horizontal lines in Fig. 1). The i-th generator is
associated with two states (δi,∆ωi), where δi is the rotor
angle and ∆ωi is the angular frequency, for all i ∈ {1, 2, 3}.

Define x(t) = [δ1, δ2, δ3,∆ω1,∆ω2,∆ω3]
T. The inputs

ui(t), for all i ∈ {1, 2, 3}, correspond to the power injection
deviations at the generators. Applying Kron reduction, we
have the following continuous-time state and input matrices
describing the evolution of x(t) [17]:

Ac=


0.000 0.000 0.000
0.000 0.000 0.000
0.000 0.000 0.000

1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000

−0.341 −0.043 −0.059
−0.472 −2.219 −1.075
0.141 0.391 −3.778

−1 0 0
0 −2 0
0 0 −3.692

 ; and

b1 = [0, 0, 0, 8, 0, 0]T; b2 = [0, 0, 0, 0, 29.41, 0]T; and b3 =
[0, 0, 0, 0, 0, 76.92]T. From the sparity pattern of bi, it is clear
that ui(t) directly impacts ∆ωi(t). The sensor matrix is

Cc =

[
0 0 0 1 0 0
0 0 0 0 1 0

]
. (15)

Finally, the measurement horizon is N = 80 and the Hankel
matrix parameter s = 20.

Below we consider three cases with different input signals
to highlight the superiority of Algorithm 1. To run Algorithm
1, we need the system dimension ñ (see Step 3 in Algorithm
1). In light of sensor noise and numerical errors, we employ
the best rank approximation that is based on the ratio of the
singular values of Yo,s,N to estimate ñ [15]. We compute
β(ñ′) = (

∑ñ′

i=1 σi)/(
∑min{ps,N}

i=1 σi) for various values of
ñ′, starting with ñ′ = 1. For a predetermined choice of τ we

then select the dimension as the least ñ′ for which β(ñ′) ≥ τ .
In our case, we set τ = 0.98.

A. Case 1: sinusoidal inputs (noisy measurements)

We set u1(t) = 0 and consider u2(t) = sin(3t + π/2) +
sin(4t+ π/13) and u3(t) = sin(5t+ π/5) + sin(6t+ π/4).
We then use the construction in Example 1 to obtain latent
system’s tuple (Ai,pi, zi(0)), for i ∈ {2, 3}. Using A1, A2,
and Ac of the power system, we obtain the augmented model
in (5) and (6). We then obtain the sampled model in (7) using
the sampling period T = 0.1 seconds. Finally, ñ1 = ñ2 = 4.
So, the true system’s dimension is ñ = 6 + 4 + 4 = 14. We
add Gaussian noise with standard deviation 0.01 to Yo,s,N .
The estimated dimension ñ′ = 13 (see Fig. 2 (b)).

In Fig. 2 (c), we compare the eigenvalues of Âd (computed
using Step 3 in Algorithm 1) and the eigenvalues of Ad.
Except for one eigenvalue of the power system, the estimated
eigenvalues are very close to the true eigenvalues. So, our
method accurately localizes the sources.

B. Case 2: arbitrary inputs (noise-free measurements)

We set u1(t) = 0, and generate u2(t) and u3(t) using the
latent system model in (2). We obtain Ai using MATLAB’s
in-built function (rss) so that the latent system has stable
dynamics. We choose pi and zi(0) to be zero-mean Gaussian
random vectors. Similar to Case 1, we obtain the sampled
model in (7) using T = 0.1 seconds. The true system
dimension ñ = 6 + 4 + 4 = 14. We consider noise free
measurements. Hence, ñ′ = ñ = 14 (see Fig. 3 (b)).

In Fig. 3 (c), we compare the eigenvalues of Âd and the
eigenvalues of Ad. Because there is no measurement noise,
the estimated eigenvalues are equal to the true eigenvalues.
In this case, as well, we have perfect localization.

C. Case 3: arbitrary inputs (noisy measurements)

We set u1(t) = u2(t) = 0, and obtain u3(t) using the
model in (2). We follow the same procedure in Case 2 to
obtain the sampled model. The system dimension ñ = 6 +
4. We add Gaussian noise with standard deviation 0.01 to
Yo,s,N . The estimated dimension ñ′ = 7 (see Fig. 4 (c)).
Unlike Case 1, the impact of the noise on ñ′ = 7 is large.

In Fig. 4 (c), we compare the eigenvalues of Âd and the
eigenvalues of Ad. Because ñ′ is smaller than ñ, it is evident
that the we cannot estimate all the eigenvalues. However, as
illustrated in Fig. 4 (c), the latent system’s eigenvalues are
perfectly estimated. So, we have perfect localization in this
case too, but with a reduced-order system model.

We provide a possible explanation as to why the estimates
of the actual system’s eigenvalues are poor in this case. The
matrix Ad is a strictly stable system (all eigenvalues are
inside the unit disc). Thus, the states, and ultimately, the
measurements converge to zero quickly (compare Fig. 2 (a)
and Fig. 3(a)). So even a slight measurement noise distorts
the true signal, and leads to spurious eigenvalues (see the
isolated red circle in Fig. 4(b)).
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Fig. 2: Source localization with sinusoidal inputs. (a) Noisy frequency measurements recorded by sensors located at Gen1 and Gen2, and
inputs are at Gen2 and Gen3. (b) Singular values of the Hankel matrix. (c) Eigenvalues in the complex plane.

Fig. 3: Source localization with arbitrary inputs. (a) Noise-free frequency measurements recorded by sensors located at Gen 1 and Gen
2, and inputs are at Gen2 and Gen3. (b) Singular values of the Hankel matrix. (c) Eigenvalues in the complex plane.
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Fig. 4: Source localization with one arbitrary input at Gen3 using
noisy measurements. (b) Singular values of the Hankel matrix. (c)
Eigenvalues in the complex plane.

VI. CONCLUDING REMARKS

We have proposed a subspace model identification method
for localizing the sources of forced inputs in unknown linear
dynamical systems. Assuming a latent linear model for the
forced inputs and a prior knowledge of the input signal’s
modal content, we cast the source localization problem as
estimating the eigenvalues of a certain augmented state-space
model. Our joint system identification and source localization
Algorithm 1 is simple and has the potential to be inte-
grated into real-time system monitoring operations. We have
demonstrated the performance of the proposed method on a
benchmark power system for several different input models.

We plan to develop disturbance rejection controllers based
on the estimated state-space model for counteracting the
forced inputs for future work.
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