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MABAT: A Multi-Armed Bandit Approach
for Threat-Hunting

Liad Dekel, Ilia Leybovich, Polina Zilberman, and Rami Puzis

Abstract— Threat hunting relies on cyber threat intelligence to
perform active hunting of prospective attacks instead of waiting
for an attack to trigger some pre-configured alerts. One of
the most important aspects of threat hunting is automation,
especially when it concerns targeted data collection. Multi-
armed bandits (MAB) is a family of problems that can be used
to optimize the targeted data collection and balance between
exploration and exploitation of the collected data. Unfortunately,
state-of-the-art policies for solving MAB with dependent arms do
not utilize the detailed interrelationships between attacks such
as telemetry or artifacts shared by multiple attacks. We propose
new policies, one of which is theoretically proven, to prioritize the
investigated attacks during targeted data collection. Experiments
with real data extracted from VirusTotal behavior reports show
the superiority of the proposed techniques and their robustness
in presence of noise.

Index Terms— Digital forensics, computer security, threat
hunting, threat intelligence, reinforcement learning.

I. INTRODUCTION

THREAT hunting is one of the most important activities
performed by security operation centers today [1]. Rely-

ing on constant feed of cyber threat intelligence (CTI), hunting
focuses on proactive collection of forensic evidence in order
to investigate latent attacks [2], [3], [4]. Actively searching for
evidence of malicious activity is preferred over the traditional
“sit and wait” approaches. Analysts use variety of security
analytics and rely on their experience and intuition to make
the right hypotheses and perform targeted search for evidence
to support or refute these hypotheses.

The decision which evidence to search for is not a trivial
one. Feeding the security analytics with irrelevant information
decreases their accuracy and increases the number of irrelevant
alerts. This in turn, makes the analyst work harder to “find
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a needle in a haystack”. Focused, targeted data collection
decreases the amount of irrelevant information eventually
displayed to the analyst. It also significantly reduces resources
spent on data collection.

eXtended Detection and Response (XDR) solutions and
Security Orchestration Automation and Response (SOAR)
systems can partially automate the data collection process [5].
But some artificial intelligence is required to automatically
decide when to investigate a promising lead, and when to look
around exploring seemingly unrelated artifacts. A classical
model for studying exploration vs exploitation trade-offs is
the multi-armed bandit (MAB) problem [6], [7]. MAB is a
theoretically solid framework but it requires adjustments to
fully utilize the power of CTI.

In this paper we model targeted data collection as a variant
of MAB. We augment MAB policies to take into account the
variety of artifacts shared among different attacks and use this
information to significantly improve targeted data collection.
The contributions of this paper are twofold:

1. Theoretical: We formulate the task of targeted data col-
lection as the Multi Shared-Arms Bandits problem (MSAB),
a special case of Combinatorial MAB [8]. We propose a
shared-arms (SA) adaptation of classic MAB policies and
demonstrate it using �-Greedy, UCB1, Thompson sampling [9]
and KL-UCB [10]. We show that the SA variant of the
classic UCB1 policy [11], [12], termed SAUCB, is in fact
a degenerated policy for Combinatorial MAB with a slightly
different constant.

2. Empirical: Evaluated based on multi-level CTI knowl-
edge base, containing more than 50K behavioral reports from
VirusTotal, the shared-arms (SA) policies are superior to
benchmark policies both in the relevance of the collected
artifacts and in the time it takes to home on the most relevant
attack. We also show that prioritizing artifacts shared by most
of the attacks increases performance.

These contributions are significant because they (1) advance
the level of automation during threat hunting, (2) increase the
effectiveness of data collection under constrained resources,
and (3) help focusing on the most relevant artifacts even when
the CTI about a novel attack is missing.

The rest of the paper is structured as follows: In § II we
provide the Background on CTI, hunting and MAB. In § III
we define threat model and the MSAB problem. We present
collection policies and the regret bound of SAUCB in § IV.
The CTI knowledge base is described in § V and in § VI
we evaluate the collection policies using this knowledge base
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along with adversarial analysis of the presented methods.
We compare and contrast to similar MAB solutions in § VII.
The findings are summarized in § VIII together with future
work.

II. BACKGROUND

A. Cyber Threat Intelligence

Cyber Threat Intelligence (CTI) is structured actionable
information describing adversaries, their motives, goals, capa-
bilities, resources, and tactics. CTI includes evidence-based
knowledge in the form of measurable events and the context
for their interpretation. CTI increases the ability of the analyst
to recognize relevant threats and respond to them in a timely
manner [2], [13]. It is a powerful mean to increase efficiency
of various security solutions, such as intrusion detection,
response, real time analytics, forensic investigation, and threat
hunting.

Since no organization possesses a complete understanding
of the threat landscape, the importance of CTI lies with
the ability to share threat information among partners in
a machine-to-machine manner. By sharing the who, what,
where, how, and when of malicious activities, targeted orga-
nizations obtain a holistic view of the threat landscape, thus
increasing their cyber security readiness [13].

According to a survey among various cyber security and IT
management roles presented by Shackleford [14], 48% of the
respondents say their use of CTI has reduced incidents through
early prevention, and 51% said they are able to respond more
quickly to incidents. Methods for CTI analysis can be applied
to provide SOC analysts with a list of related information,
supporting them in the decision making process while handling
cyber incidents [15], [16].

In an effort to formalize a standard language for shar-
ing CTI, DHS Office of Cybersecurity and Communications
funded MITRE to develop the Structured Threat Information
eXpression (STIX) language.1 STIX covers the entire range
of cyber security concepts, including observables, indicators
of compromise (IOC), attack patterns, tools, malware, threat
actors, course of action, and other. A STIX element is denoted
as STIX Domain Object (SDO). SDOs such as observable
and IOCs are considered low-level SDOs, while SDOs such
as attack patterns, tools and threat actors are considered
high-level SDOs. Additional CTI languages include Malware
Information Sharing Platform (MISP),2 as well as proprietary
languages and ontologies developed by McAfee [17] and
IntelGraph by Accenture [18].

B. Threat Hunting

Generally speaking, threat hunting includes series of inves-
tigative steps for confirming or refuting attack hypotheses.
This process may include forensic investigations and various
analytics whose objective is inferring the attack steps and
collecting artifacts. Cyber security experts are divided on the
exact stages of the threat hunting cycle and on its re-active

1https://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
blog/stix-20-finish-line

2https://www.misp-project.org/

or pro-active nature. On one hand, some experts define threat
hunting as proactively looking for early indications of pre-
sumably ongoing attacks without waiting for alerts to indicate
suspicious activity [19]. On the other hand, threat hunting may
refer to an investigative process initiated in response to an
alert. This process may include advanced analytics, forensic
investigations, targeted data collection, or policy updating
[4], [20]. The main difference between the proactive and
reactive threat hunting is the trigger for the investigation.
Proactive threat hunting relies on threat intelligence to actively
search for potentially malicious behavior. Reactive threat hunt-
ing involves forensic investigation of potentially malicious
behavior in response to alerts.

Security Orchestration, Automation and Response (SOAR)
systems perform autonomous response to security alerts or
suspicious indicators relying on prescribed workflows, thus
providing automation of hypotheses testing. The most sophis-
ticated solutions utilize interactive guidebooks to help the
analysts focus on what is important as they scope and assess
the attack hypotheses [21], [22], [23], [24]. In this paper we
present an automation of the transition between hypothesis
generation and hypothesis testing, which is facilitated by the
automatic generation of playbooks.

C. Multi-Armed Bandit

The multi-armed bandit (MAB) is a classic reinforcement
learning problem that exemplifies the exploration-exploitation
trade-off dilemma. Consider a gambler in front of k slot-
machines who has to decide which machines to play, how
many times and in which order. The goal of the gambler
is to maximize his total-expected reward [6]. MAB problem
consists of k arbitrary reward distributions, with expected
rewards μ1, . . . , μk , each related to a slot-machine. MAB
illustrates the fundamental difficulty of decision making in the
face of uncertainty, since the reward distributions are unknown
to the gambler. In the classical problem, each arm-pull may
result in a gain of some reward [25]. We consider the binary
case where each arm pull ends as a win or a loss, i.e., a gain
of 1 or 0 (no gain), respectively.

In MAB a player tries to make successive arm-pulls in
order to collect as much reward as possible. On each turn,
the player selects a machine, pulls its arm and collects some
reward according to the machine’s reward distribution. MAB
policy is a function that determines which machine/s the player
should select on each turn to maximize the eventual reward.

If the reward distributions were known, the optimal policy
would be to constantly choose the machine with the highest
expected reward. Since the expected rewards are unknown,
an exploration-exploitation trade-off is considered. The player
has to choose between following what seems to be the best
choice (“exploiting”) or testing some alternative (“exploring”),
hoping to discover a choice that beats the current best choice
hence avoiding getting stuck in a local maxima [26].

MAB has a long history. Many variants of the problem were
studied and many policies were proposed [27]. In § III we
will define the Multi Shared-Arms Bandits problem (MSAB),
which is closely related to MAB with dependent arms [28].
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A popular success criterion of MAB policies is the expected
loss due to not choosing the optimal arm, referred to as the
regret [11]. Theoretical guarantees on the regret of MAB
policies allow managing the risk of making wrong deci-
sions under uncertainty. The literature distinguishes between
instance-dependent and instance-independent regret. We derive
instance-dependent regret bounds utilizing the Combinatorial
MAB framework [8].

Out of the wide range of MAB algorithms, we chose to
focus on the following four policies:

1) �-Greedy: The family of policies called �-Greedy man-
ifest trade-off between exploration and exploitation captured
by the parameter � [29]. At every iteration, the policy selects
a random arm with the probability of � or otherwise the arm
with the highest average reward. We denote the average reward
of arm j as X j .

2) Thompson Sampling (TS) [9]: This algorithm samples
from the learned reward distributions of the arms and chooses
the arm with the largest sampled reward. Arms with higher
average rewards are chosen more frequently. We use TS policy
for Bernoulli reward distributions which relies on the number
of successful (s j ) and unsuccessful ( f j ) pulls of arm j .

3) UCB1: A family of policies known as upper confidence
bound (UCB) exemplify the principle of optimism under
uncertainty to provide bounded regret [11]. UCB1 relies on the
total number of arm pulls (n), the average reward of each arm
(X j ), and their pull counters (n j ) to select arms that maximize:

X j +
√

2 ln n
n j

.

4) KL-UCB: Based on the Kullback-Leibler divergence,
Garivier and Cappé [10] proposed a MAB algorithm with
strictly better theoretical guarantees than UCB1. KL-UCB
mainatins the pull counters (n j ) and the total reward (s j ) for
each arm j .3

5) Combinatorial UCB (CUCB): Chen et al. [8] define a
MAB problem where in every iteration a set S of arms, called
a super-arm, are pulled altogether. The total aggregated reward
R(S) of pulling a super-arm S is derived from the rewards of
the individual arms X j . It may be a simple summation R(S) =∑

j∈S X j or a different aggregation function. Let μ j be the
expected reward of arm j . The expected aggregated reward
rμ(S) = E(R(S)) should have two properties: Monotonicity:
∀ j , μ j ≤ μ�j �⇒ rμ(S) ≤ rμ�(S); and Bounded smooth-
ness: there exists strictly increasing fucntion f (·) such that
max j∈S |μ j − μ�j | ≤ � �⇒ |rμ(S)− rμ�(S)| ≤ f (�).

For many aggregation functions, finding the set S that
maximizes rμ(S) given the individual expected rewards {μ j }
is NP-hard. Thus Chen et al. assume an (α, β)-approximation
oracle that takes the individual expected rewards {μ j } and
outputs a super-arm that with probability β generates an α
fraction of the optimal expected aggregated reward. According
to the CUCB policy, the beliefs regarding the individual
expected rewards are updated as follows:

μ̂ j,t = X j,t +
√

3 ln t

2n j,t
(1)

3We assume rewards of 0 (failure) and 1 (success).

Fig. 1. Collection of artifacts during threat hunting modeled as MAB problem
employed in a SOAR system.

where t is current round, X j,t is the average reward obtained
from arm j so far, n j,t is the number of times arm j has been
played. In the rest of this paper we may add the subscript t to
various quantities to indicate the relevant algorithm’s iteration.
According to CUCB whenever a super-arm S is played all the
respective arms j ∈ S are played.

We will show that the proposed targeted data collection
approach for threat hunting is a spacial case of CMAB problem
and show that a shared arms (SA) variant of UCB1 is in fact
CUCB with a slightly different constant. Chen et al. provide
a framework for deriving CUCB regret bounds for various
applications. We elaborate on the regret bounds respective to
our threat hunting application in § IV-D.

The main differences between CMAB and MSAB are three-
fold: (1) In MSAB every super-arm may be pulled only once.
(2) The total aggregated reward R(S) is the maximum of
individual rewards. (3) It follows from (2) that there is no
need in (α, β)-approximation since the optimal super-arm is
easily selected according to the scores of the individual arms.

III. PRELIMINARIES AND PROBLEM DEFINITION

Consider an analyst investigating an incident as depicted
in fig. 1. Sensor data (events, logs, and artifacts extracted
from them) flows into the security information and event
management (SIEM) (fig. 1.1). The various security analytic
products operate using machine learning or expert rules to
identify malicious behavior from artifacts stored in the SIEM.
When malicious behavior is identified, the analyst receives an
alert (fig. 1.2). Every alert is associated with a set of artifacts
that caused it. After initial triage, when investigating a set of
alerts the analyst is required to examine the set of artifacts
associated with these alerts in order to form the complete
picture of the attack (fig. 1.3). On one hand, we would like to
collect the entire set of all available artifacts in order to form
the complete picture. On the other hand, this is impossible due
to constrained resources.

The latter is especially true when dealing with forensic data
collection rather then real-time monitoring (e.g. hooking for
file access or registry key usage). On many occasions the
CTI about a malicious campaign arrives when the organization
has already been penetrated. When it happens, the monitoring
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policies are updated, but searching the entire IT infrastructure
for suspicious artifacts (files, processes, registry keys, etc.) is
too expensive and may disrupt operations. Such artifacts would
be collected only as a result of a targeted hunt.

Next we discuss the assumptions regarding the attacker and
the security tools in place.

A. Threat Model and Assumptions

1) Single Attack: It is a common assumption in threat
hunting that an organization is under attack at any specific
time. In order to perform efficient forensic investigation and
correctly prioritize security alerts it is important to obtain as
much information as possible about the currently investigated,
yet unknown attack. In the scope of this work, we propose
data collection policies focusing on one attack at a time.
Nevertheless, the proposed policies are equally applicable for
collecting data on multiple concurrent attacks as explained in
§ VI-D.

2) Forensic: The proposed policies are most applicable
when searching for evidence of an attack post-factum or if the
investigated adversarial activity is repetitive. “Racing” against
the attacker is out of the scope of this work.

Definition 1 (Evidence): An artifact that was left by an
attack on a host and can be found if specifically searched
for.

Definition 2 (Search): The action of using a dedicated
agent to attempt the collection of evidence.

3) CTI Is There: We assume that some intelligence about
the investigated attack is found within the CTI knowledge
base. For example, it may be executed by one of the
well-known threat actors, but we do not know which. Or it
may be any of the “we should have known that!” cases when
relevant artifacts are within the CTI, but they are hard to
pinpoint.

Definition 3 (Relevant Artifact): Artifact associated with
the actual attack, promoting the forensic investigation of the
attacked host when collected.

We assume two levels of the novelty of an attack:
(1) A mild case, when the investigated attack is known. For

example, the attacker may use a variant of a malware that has
been used against other victims during the same campaign.
This case is not as trivial as searching for a malware in a
database. The main challenge here is homing on the actual
attack despite imperfect CTI and similarities between attacks
(see fig. 13) in an efficient, resource hungry manner.

(2) A tough case, when the knowledge base does not
contain information about the entire family of the malware
being investigated. This may be the case of a new threat actor
or a new campaign. The challenge here is homing on the
attacks which are most similar to the investigated one in terms
of artifacts stored in the knowledge base.

4) Erroneous Data Collection and Malware Variants: We
assume that the attacked host is monitored and that the mon-
itoring agent is capable of collecting all types of observable
artifacts defined in the CTI. But we do not assume trusted
monitoring. In either case, absence or presence of the actual
attack in the knowledge base, we assume malware variants that

Fig. 2. Mapping between the 3 dimensions possible classes in our problem
to the 2 dimensions possible classes. Each class is the intersection of the
3 dimensions. The classes marked with bold line are used for recall and
precision calculation according to the defined formulas.

may alter their behavior (see fig. 1) and any forensic evidence,
e.g., a filename used for the dropper. Yet, we assume that such
changes are limited and some artifacts are retained (see the
adversarial analysis in § VI-E.2).

Definition 4 (Quality of CTI): An artifact associated with
an attack within the knowledge base may not be found while
attempting to collect it with the false negative probability Pf n.
An artifact which is not related to the actual attack may
be collected during the investigation with the false positive
probability Pf p. The CTI may be considered informative when
1− Pf n > Pf p.

Performance of a classical information retrieval system is
evaluated assuming that all items are retrievable and the search
engine should only decide which are relevant (positive) and
which are not (negative). In our case, an artifact may be
relevant but irretrievable. Thus, we clarify what do positive
and negative instances mean in our case to avoid confusion and
define the targeted data collection objective. An artifact may
be categorized along three dimensions: existence, relevance,
and search attempt. We consider only artifacts that are both
relevant to the actual unknown attack and exist on the host
as positive (the left top quarter in fig. 2). Artifacts that are
irrelevant to the actual attack or don’t exist on the host are
considered as negative and their search should be avoided.

The objective of the targeted data collection policies dis-
cussed in this paper is to maximize the number of collected
artifacts associated with the actual attack using a limited
number of search tasks.

B. Artifacts Collection as a Multi Shared-Arms Bandits
Problem (MSAB)

In this section, we formalize the problem of efficient tar-
geted data collection as a new variant of the MAB problem.
Relying on CTI feeds or behavioral malware reports (fig. 1.4),
we assume a finite set of attacks denoted by A = {a1, . . . , ak}
and a finite set of artifacts D j associated with each attack.
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The set of all observable artifacts in the CTI knowledge-base
is denoted by O =⋃

D j . An artifact o ∈ O may be associated
with multiple attacks. We will refer to such artifacts as shared.
The set of attacks sharing an artifact o is denoted by So.

For simplicity, we assume that artifacts are collected itera-
tively, one at a time, by the SOAR agents (fig. 1.6). We also
assume a fixed collection cost for each artifact, but the pro-
posed algorithms can accommodate arbitrary data collection
costs. The maximal number of collection tasks is bounded by
the budget B . In each iteration t ∈ T = {1, . . . , B} of the
collection process an artifact ot ∈ O is selected according
to some policy P : T → O. Here and in the rest of
the text we assume that the decisions of all policies depend
also on the history of all previous data collection attempts
in the current investigation. We skip the policy arguments
defining the investigation history for brevity. The main focus
of the current paper is devising an efficient collection policy
that maximizes the number of successfully identified artifacts
related to the attack being investigated.

Each one of the attacks (ai ∈ A) in the knowledge-base
is modeled as a single-armed slot-machine (a1, a2, . . . , ak in
fig. 1). Attack selection policy denoted Pa selects an arm to
pull in each iteration.

Pulling machine’s arm (fig. 1.5) means collecting some
observable o ∈ D j associated with the attack on the inves-
tigated host (artifact i in fig. 1.6). An observable selection
policy Po selects an observable artifact associated with the
selected attack Pa(t).

Definition 5 (Composite Policy): Let Pa : T → A and
Po : A→ O be the attack and observable selection policies,
respectively. The composition P = Po ◦ Pa results in selecting
an observable to collect in each iteration t ∈ T .
P = Po ◦ Pa is reminiscent of the two-level bandits policy by
Pandey et al. [28]. Unfortunately, since we assume forensic
analysis, in our case every artifact may be searched only once.
There is no point in searching again for the same artifact in
the same environment. As a consequence, there is no arm
pull history to learn from at the second level. Any observable
artifact selected by P that makes it to the analysts dashboard
at time t results in a reward (fig. 1.7).

Definition 6 (Reward): An artifact ot is searched for at
time t grants a reward R(ot ).

R(ot ) =
{

1 ot is collected

0 otherwise

If the artifact ot was searched for due to investigating the
attack a j (ot ∈ D j ) then the reward from playing arm j is
X j,t = R(ot ). Expected reward μ j from playing an arm a j is
two-fold: either we search for an artifact shared with the actual
attack or not. We call the latter a mistake pull. The reward
from searching for an artifact shared with the actual attack
Y j,t ∼ Bernoulli(1− Pf n) follows the Bernoulli distribution
with probability 1 − Pf n . The reward from a mistake pull is
Z j,t ∼ Bernoulli(Pf p). We assume that all Y j,t and Z j,t are
independent. Also, Y j,t are identically distributed for all j, t
and the same is true for Z j,t . We denote the expected reward
from mistake pulls as μ = E(Z j,t) = Pf p . Let γ j denote

TABLE I

SUMMARY OF NOTATIONS

the fraction of a j ’s artifacts shared with the actual attack. The
expected reward from pulling arm a j is

μ j = E(X j,t ) = γ j (1− Pf n)+ (1− γ j )Pf p. (2)

In MAB problems, the optimal arm (a∗) is defined as
the arm with the maximal expected gain. In our case, it is the
actual attack in the mild case (γa∗ = 1) or an attack that is the
most similar to the actual attack in terms of artifacts (a1 in
fig. 1) in the tough case (γa∗ < 1). Let Y ∗t = Xa∗,t denote
the reward from playing the optimal arm at time t (called an
optimal arm-pull). Following the MAB notation, we denote
the expected reward from an optimal arm-pull by μ∗. In the
mild case when γa∗ = 1, μ∗ = E(Y ∗t ) = 1− Pf n .

Definition 7 (Multi Shared-Arms Bandits Problem (MSAB)):
Given set of attacks (arms) A, their artifacts D j ⊆ O, and a
budget B; find a policy P : T → O such that the total reward
is maximized after at most B arm pulls.

IV. MSAB POLICIES

After formalizing efficient artifacts collection as MSAB
problem, in this section we utilize the additional information
about shared arms to significantly improve standard MAB poli-
cies. We start with definitions needed to explain the shared-
arms (SA) technique. In § IV-A a general policy template for
the MSAB problem is provided (alg. 1), allowing to easily
create new SA variants of existing policies. Next, we discuss
the SA attack selection policies (Pa), artifact selection policies
(Po), and their compositions (Po ◦ Pa) in § IV-B. Finally in
§ IV-D we show that the SA variant of UCB1 is a special case
of the Combinatorial UCB (CUCB) framework [8] and derive
its’ regret bound.

Consider an artifact ot = P(t) selected by some policy P at
iteration t . Following the CMAB notation we refer to the set of
attacks Sot sharing the artifact ot as a super-arm. A super-arm
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Algorithm 1 Multi Shared-Arms Bandits (MSAB) Tem-
plate Algorithm
Input: a1, . . . , ak - attacks (bandit arms)

D1, . . . , Dk - associated artifacts sets
O - observable artifacts set
B - investigation budget
Pa - attack selection policy
Po - observable artifact selection policy

Output: F - found artifacts set
1 F ← {}; n ← 0; t ← 0
2 ∀o∈O : So ← {a j : o ∈ D j }
3 ∀ j∈[1,k] : n j ← 0, s j ← 0, f j ← 0
4 for t ∈ [1, B] do
5 if t ≤ k then // initial exploration
6 a j ← at ;
7 else
8 a j ← Pa(t) // select attack
9 ot ← Po(a j ) // select artifact from D j

// search artifact and determine
reward

10 rwd ← Search Arti f act (ot)
11 for ai ∈ Sot do UpdateArm(i, rwd, ot)
12 if rwd > 0 then F ← F ∪ {ot };
13 return F
14 Function UpdateArm( j , rwd, o):
15 n ← n + 1; n j ← n j + 1
16 if rwd = 1 then s j ← s j + 1 else f j ← f j + 1
17 D j ← D j \ {o}

pull is thus the act of searching for ot , paying the respective
cost, and obtaining the respective reward:

Definition 8 (Super-Arm Pull): Let ot be an artifact
selected by policy P at iteration t. Super-arm pull
(R(ot ), ot , t) is defined as searching ot at iteration t,
obtaining the reward R(ot ), increasing the total number of
pulls n and reducing the remaining budget B by 1.

Definition 9 (Arm Update): Assume a super-arm pull
(R(ot ), ot , t) and a set of attacks Sot = {ai : ot ∈ Di } such
that ai share the artifact ot . Arm update (ai , R(ot ), ot , t) is
defined as updating at iteration t ai ’s average reward (Xi,t )
and increasing ai ’s pulls counter (ni,t ) (without reducing the
remaining budget B).

We say a collection policy (P) is a SA collection policy
if on every iteration (t), it updates the properties of arms that
share the observable artifact (ot ) selected by the policy. In this
article we adapt existing MAB policies to be SA collection
policies as described next.

A. The Shared-Arms Policy Template

The pseudo code shown in alg. 1 is a template of SA
collection policy. Specific parts of the template (e.g. Pa , Po,
UdateArm) are implemented according to the chosen policies.
Next, we will explain the pseudo code.

We start by initializing parameters and calculating So for
each one of the artifacts o ∈ O in the CTI knowledge-base
(lines 1-3). Parameters maintained for each arm j include the

number of related artifacts searched for (n j ), found (s j ), and
not found ( f j ). These parameters are sufficient to calculate arm
parameters required by various MAB policies. For example,
average reward is X j = s j

n j
.

Next, we iteratively select artifacts to search until the budget
B is exhausted (lines 4-12). The first iterations are devoted to
pulling each attack once in order to obtain the attacks’ initial
reward distributions (lines 5-6). While many MAB algorithms,
perform the initial exploration for the first k rounds, others,
like Thompson Sampling, do not require such a phase. This
initialization phase may be avoided by jumping from line 4
directly to line 8. Future work may utilize the distribution of
artifacts across arms to optimize the initial exploration.

Following the initial exploration, attacks are selected
according to the Pa policy (line 8). After selecting an attack a j ,
we select an artifact ot ∈ D j using the artifact selection
policy Po (line 9). ot is searched for in the attacked host,
and a reward, rwd , is obtained according to the search result
(line 10). Next, we update the parameters of all arms sharing ot

(line 11). While updating the arms’ parameters (lines 14-17),
ot is removed from the set of remaining artifacts because it
makes no sense to repeatedly search for the same artifact.
In case some D j is empty after the removal of ot , it’s
corresponding attack won’t be available for selection on the
next iterations. If the selected artifact was found, it is added
to the set of collected artifacts (line 12).

Variety of MAB policies can be adapted to MSAB according
to alg. 1. In § VI we demonstrate the adaptation of four poli-
cies. Such heuristic adaptation provides no regret guarantees,
but empirical results show preferable performance of the SA
variants over their non-adapted counterparts (§ VI fig. 4).

B. Most-Shared Artifact Selection Heuristic

Attack selection policies (Pa) need to be complemented
with artifact selection policies (Po) in order to provide a
complete solution. While the trivial artifact selection policy
is the random policy, we suggest a heuristic selecting the
most-shared (MS) artifact, i.e., the artifact shared by highest
number of attacks: M S(a j ) = argmaxo∈D j

|So|. By collect-
ing the most-shared artifact and pulling all the shared-arms,
we pull the maximal number of arms at each iteration. Each
arm-pull means feeding the policies with more information.
Consequently pulling all shared-arms maximizes the amount
of extracted information in every collection task.

C. SA Variants of Common MAB Policies

All SA variants of regular MAB policies utilize the addi-
tional information gained from updating all arms in Sot . Suc-
cessful search results provide additional evidence for multiple
attacks. Failed search results are also useful because they
decrease the likelihood of selecting all attacks sharing absent
artifacts even if these attacks were not explicitly selected by
the MAB policies themselves.

Note that MAB is a private case of MSAB where no artifacts
are shared by different attacks, i.e., ∀o ∈ O : |So| = 1.
Thus, a single arm update is performed corresponding to
each selected observable. In addition, as with the standard

Authorized licensed use limited to: ASU Library. Downloaded on March 12,2024 at 17:37:35 UTC from IEEE Xplore.  Restrictions apply. 

Isr
ael

-U
S BIR

D Fou
nd

ati
on



DEKEL et al.: MABAT: A MULTI-ARMED BANDIT APPROACH FOR THREAT-HUNTING 483

MAB, in such a case the rewards of the different arms are
independent.

For a standard MAB policy with independent arms the
expected average reward of arm j is identical to its expected
reward: E(X j ) = E

(
s j
n j

)
= γ jμ

∗+(1−γ j )μ = E(X j ). Since
all MAB policies strive to increase the gained reward they
select arms with larger fraction (γ j ) of artifacts shared with
the actual attack. Consequently, due to updates of the shared
arms (def. 9, alg. 1 line 11) those arms that were not explicitly
selected by the policies in line 8 may record superfluous
rewards. Eventually, the arm parameters maintained by alg. 1
may reflect more optimistic beliefs than the expected reward
of sub-optimal arms.

E

(
s j

n j

)
≥ γ jμ

∗ + (1− γ j )μ (3)

Such optimism may increase the amount of unnecessary
exploration but it pays-off as we will see in § VI-D fig. 4.
Next we analyze the behavior of the SA variant of UCB1
attack selection policy and derive its regret bound using the
CMAB framework.

D. Shared Arms as Combinatorial MAB

In this section we show that the SA variant of UCB1 is
reminiscent to the Combinatorial UCB policy introduced by
Chen et al. [8] with a slightly different constant. We use their
framework in order to infer a regret bound for MSAB. For
simplicity, the following discussion refers only to the mild
case. Nevertheless, the tough case can be simulated in the
mild settings by increasing the probability P f n .

Assume an MSAB problem with k arms, and a single
optimal arm with the expected reward μ∗ = 1 − P f n . The
reward μ∗ is expected when searching for an artifact shared
with the actual attack. Otherwise, the expected reward of a
mistake pull is μ = Pf p. Assume a composite policy UCB1-
Rnd where Pa = UC B1 and Po(ai ) randomly selects an
artifact from Di . Let ot = Po(Pa(t)) be the artifact selected at
iteration t . Following defs. 8 and 9 the rewards used to update
all arms in Sot are always equal because they stem from the
presence or absence of the same artifact in the investigated
environment.

In terms of CMAB the set Sot of attacks sharing the artifact
ot is a super-arm. Assume two artifacts ot1, ot2 . If Sot1

= Sot2
then according to CMAB it is the same super-arm. Every
artifact may be searched for only once. Thus, a super-arm
S may be pulled at most |{o ∈ D : So = S}| times. This is an
important difference between MSAB and CMAB applications
presented by Chen et al. [8]. Luckily, their framework does
not require unlimited lifetime of the super-arms.

The total aggregated reward from pulling a super-arm within
the CMAB framework R(Sot ) is equal to the reward of
searching an artifact ot according to def. 6 (R(Sot ) ≡ R(ot )).
Thus to derive R(Sot ) from a set of (the identical) rewards of
the individual arms we can assume any aggregation function
that selects one value from the set (e.g., min or max). Assume
R(Sot ) = any{Xi,t : ai ∈ Sot } where ∀i, j Xi,t = X j,t and ’any’
chooses an arbitrary element.

Consider the vector of expected rewards (μ1, . . . , μk) of
all individual arms (eq. (2)). Assume a set of super-arms S
corresponding to the set of remaining artifacts that were not
searched for yet. Unlike in most CMAB applications, the
problem of choosing a super arm S ∈ S that maximizes
E(R(S)) is trivial. We need to choose any artifact from the
arm with the maximal expected reward.

argmax
S
{E(R(S))} = argmax

S

{
max{μ j : a j ∈ S}} =

= So where o = Po(argmax
a j

{μ j })

Thus rμ(S) = E(R(S)) = maxa j∈S{μ j }. In particular,
the (α = 1, β = 1)-approximation oracle in our case is
Po(argmaxa j

{μ j }).
CUCB applies the approximation oracle on the vector

(μ̂1,t , . . . , μ̂k,t ) at each iteration t where μ̂ j,t is the CUCB
score according to eq. (1). Thus, if Pa(t) = argmaxa j

{μ̂ j,t}
alg. 1 behaves exactly as CUCB updating all arms associated
with the super-arm Sot in every iteration. Note that when

Pa(t) = UC B1(t) = argmaxa j

{
X j,t +

√
2 ln t
n j,t

}
the only

difference between alg. 1 and CUCB is the constant 2 instead
of 3/2 within the square root.

Monotonicity requirement is satisfied because ∀ j : μ j ≤
μ�j �⇒ rμ(S) = maxa j∈S{μ j } ≤ maxa j∈S{μ�j } = rμ� (S)
Finally, the bounded smoothness function is f (x) = x .

Lemma 4.1 (MSAB Bounded Smoothness): ∀S ⊆ A, {μ j },
{μ�j } : maxa j∈S|μ j − μ�j | ≤ �⇒ |rμ(S)− rμ�(S)| ≤ f (�)

Proof: Let S ⊆ A be an arbitrary super-arm. Let a j ∈ S
and �,μ j , μ

�
j ∈ [0, 1] such that maxa j∈S |μ j −μ�j | ≤ �. Let

ai = argmaxa j
{μ j } and ai � = argmaxa j

{μ�j }. Then rμ(S) =
μi and rμ�(S) = μ�i � . Without loss of generality assume μ�i � ≥
μi . Then |rμ(S)−rμ� (S)| = μ�i � −μi = μ�i � −maxa j∈S{μ j } ≤
μ�i � − μi � ≤ maxa j∈S |μ�j − μ j | ≤ � = f (�) �

Let SB denote a set of bad super-arms with rμ(S) <
αμ∗ for each S ∈ SB . In our case, since α = 1, SB

corresponds to the collection of artifacts not shared by
the actual attack SB = {So : o ∈ O \ D∗}. Regret
bounds of CUCB depend on the following two quantities
adapted from [8]:

�min = min
a j∈A

{
μ∗ −max

{
rμ(S) : a j ∈ S ∧ S ∈ SB

} }
�max = max

a j∈A

{
μ∗ −min

{
rμ(S) : a j ∈ S ∧ S ∈ SB

} }

Intuitively �min is the regret of the best arm (attack) that
includes artifacts not related to the actual attack. In MSAB
terms it is �min = μ∗−maxa j∈A,γ j <1{μi }. Similarly, �max is
the regret of the worst arm (attack) �max = μ∗−mina j∈A{μi }.
Typically �max would be � = μ∗ − μ.

The simplified form of the instance-dependent regret bound
of CUCB for the targeted data collection application (adapted
from [8] Equation 4) is:

(
6 ln B

�2
min

+ π2

3
+ 1

)
· k ·� (4)
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Fig. 3. An illustration of AttackDB’s structure.

V. ATTACKDB

Here the knowledge base (AttackDB) fusing data from
multiple CTI sources used in our experiments. We con-
structed a rich AttackDB that consists of CTI from the
MITRE ATT&CK Enterprise knowledge base,4 the AlienVault
Open Threat Exchange,5 the IBM X-Force Exchange,6 and
VirusTotal.7 The details on the structure and the population
of AttackDB can be found in Supplemental Materials II.A
and II.B.

Following the CTI fusion we built a data set associating
a wide variety of telemetry including file names (opened,
created, searched, etc.), URLs, domains, IPs, process names,
registry keys, mutexes, emails, and more with 253 attack
families as depicted in fig. 3. The telemtry was extracted from
53,005 VirusTotal behavioral reports and contains about half a
million observable artifacts in addition to 144,216 IOCs. More
than 90% of the attacks are associated with less than 10K
artifacts. Additional statistics on the data set can be found in
Supplemental Materials II.C.

VI. EXPERIMENTS

In this section we present the experiments conducted to
evaluate the collection policies using AttackDB. We aim at
answering the following research questions:

RQ 1 (SA or Not SA): To what extent do the SA policy
variants outperform their non-SA counterparts? (fig. 4)

RQ 2 (MS or Rnd): Which artifact selection policy is better
MS or random selection? (fig. 5)

RQ 3 (Amount of CTI): Which policies benefit the most
from the amount of CTI on the actual attack? (figs. 4 to 6)

RQ 4 (Efficiency Through Time): Which data collection
policy collects the largest number of relevant artifacts in a
given time budget? (figs. 8 7 and 10)

RQ 5 (Attack Detection): How fast do the policies home on
the actual attack? (fig. 8)

RQ 6 (Robustness to Noise): How robust is targeted data
collection to attack variations? (figs. 9 and 10)

4https://github.com/swimlane/pyattck
5https://otx.alienvault.com/dashboard/new
6https://exchange.xforce.ibmcloud.com/
7https://www.virustotal.com/gui/home/search

RQ 7 (Adversarial Analysis): How can the attacker delay
the investigation? (fig. 10)

A. Composite Policies and the Oracle

According to def. 5, we evaluate MSAB policies composed
from an attack selection policy and an observable selection
policy. There are ten attack-selection policies (Pa): Rnd – a
baseline that randomly selects an attack. UCB1 – the classic
UCB1 policy. EG01 – the classic �-Greedy policy. We use
� = 0.1, which outperformed other � values in preliminary
experiments. TS – Thompson sampling policy [9]. KL-UCB –
the KL-UCB policy [10]. SAUCB, SAEG01, SATS,
SAKLUCB – the SA variants of UCB1, EG01, TS, and
KL-UCB policies respectively. CUCB – the Combinator-
ial UCB policy [8] applied for MSAB. The following two
observable selection policies (Po) can be combined with each
attack selection policy: Rnd(a j ) – randomly selects an artifact
associated with a j . MS(a j ) – selects the most-shared artifact
o ∈ D j .

In total there are twenty composite collection policies
(Po ◦ Pa). We name the composite policies according to their
two constituents. For example, EG01-Rnd selects an attack
according to the �-greedy policy, and then selects a random
observable. SAUCB-MS selects an attack according to the SA
variant of UCB1 policy. Then it selects the most-shared artifact
associated with the attack.

To highlight the space for potential improvement we execute
an Oracle that always selects the optimal attack.

B. Experimental Settings

The independent variables in our experiments are the poli-
cies described earlier, the actual attack being investigated,
quality of the CTI (Pf p, Pf n) to challenge the robustness of
the policies, novelty of an attack, and the investigation budget.

1) Actual Attack: We run the experiment with each one of
the 253 attacks in the AttackDB. Attacks differ by the number
of artifacts associated with them, and the artifacts shared with
other attacks. We mimic an attacked host by populating its
logs with a subset of all artifacts in the AttackDB. Some of
them are related to the actual attack and some are not.

2) Quality of the CTI: We assume errors in the CTI
due to variety of reasons (see § III-A). The false positive
(Pf p) and false negative (Pf n) error probabilities encapsu-
late both the errors due to imperfect data collection and
errors due to malware variants. To test the robustness of
the collection policies in extreme cases we experiment with
Pf p ∈ {0, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64} and Pf n ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We will refer to
Pf p = P f n = 0 as high CTI quality and to Pf p = 0.01, Pf n =
0.1 as medium CTI quality.

3) Novelty of an Attack: We experiment with the actual
attack present in or absent in the AttackDB. The former
(a mild case) mimics CTI containing information about the
actual attack. The latter (a tough case) mimics a situation
when AttackDB does not contain information about the whole
malware family. Yet, some relevant artifacts that are shared
with multiple malware families in the AttackDB help guiding
the investigation.
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Fig. 4. The average reward as a function of the number artifacts associated with the actual attack for SA and non-SA variants of MAB policies
(RQs 1 to 3) (γ ∗ = 1, Pf p = Pf n = 0, Po = Rnd).

4) Budget: In our experiments we use both constant and
non-constant budgets.

C. Evaluation Metrics

To evaluate the effect of the collection policy on the artifacts
collection process we use the following metrics:

1) Average Reward: MSAB policies maximize the total
reward. The average reward (X B) of a policy after B iterations
across all arms is the total number of highlighted artifacts until

iteration B , divided by B: X B =
(∑k

j=1
∑B

t=1 X j,t

)/
B .

High reward indicates that the policy makes a good use
of the clues (found and not found artifacts) during the
search.

2) Recall and Precision: We measure the ability of a policy
to pinpoint existing relevant artifacts using precision and recall
(see fig. 2). While the general intuition behind precision and
recall is retained, we note here, that quality of the CTI,
in particular Pf p, directly affects precision of the collected
data. The policies have no means to differentiate between TP
and FP. Thus it is important to evaluate the extent to which
FP mislead the search process by measuring precision.

Different attacks have different numbers of relevant arti-
facts, D j , associated with them. Thus, comparing or averaging
precision across attacks at specific t , denoted as P@t,8 is
unfair toward attacks with less than t artifacts. To remedy
the heterogeneity of |D j | we will use mean average precision.

3) Mean Average Precision (MAP): MAP is a metric com-
monly used to evaluate the performance of an entire informa-
tion retrieval process [30], [31]. MAP is derived from P@t.
Provided an investigation of the attack a j , average precision,
AP(a j ), is defined as the P@t averaged over those arm
pulls at which the searched artifact was relevant and success-
fully retrieved: AP(a j ) =

(∑B
t=1:P(t)∈D j

P@t · X jt

)/
(T P+

F N), where T P + F N is the total number of existing
relevant artifacts (as in fig. 2). Mean AP is M AP =(∑

a j∈A AP(a j )
) /

k, where k is the number of attacks.

4) Normalized Rank: The average reward of an arm X j

reflects the confidence of the policy that arm j is the optimal
one (i.e. the actual attack). We order all attacks on a scale
[0, 1] where 0 corresponds to the lowest average reward and
1 corresponds to the highest and refer to the position on an
attack on this scale as its normalized rank.

8Commonly referred to as Precision at k (P@k) in literature.

D. Results

1) Mild Case With Perfect CTI: We execute the first exper-
iments in mild settings (γ ∗ = 1) with high quality CTI
(Pf p = P f n = 0). The investigation ends when 100% of
the relevant existing artifacts are found. Since all successfully
collected artifacts are relevant (precision = 1), the main
challenge is identifying the actual attack fast, despite shared
artifacts. We elaborate on identifying the actual attack in
presence of noise in § VI-E.

a) SA or not SA: The first and most important question
(RQ 1) is whether or not SA variants of standard MAB policies
implemented according to alg. 1 outperform their non-SA
counterparts in our problem settings. We compare the SA and
non-SA variants of attack selection policies

Figure 4 shows that SA variants of EG01, UCB1, TS,
and KL-UCB outperform their non-SA counterparts. CUCB
is omitted because it is inherently a SA policy (Figure IV-D).
In the rest of this section we present only the SA variants
except when other results exhibit a trade-off between the
variants.

b) MS or Rnd: Figure 5 focuses on the artifact selection
policies comparing the selection of the most shared artifact
with random selection (RQ 2). The results show consistent
benefit of MS over Rnd. Thus, in the rest of this section,
we present only the MS results except for the random
baseline.

c) Amount of relevant CTI: We conclude the first part of
the results with fig. 6 that summarizes the best performing
combinations of policies (SA*-MS). Figures 4 to 6 show
that the amount of relevant CTI significantly affects the
performance of automatic targeted data collection (RQ 3).
The more CTI there is the higher is the average reward.
It means that the targeted data collection becomes more
efficient with additional CTI up to the level where SAKLUCB
and SATS approach the efficiency of the oracle. This behavior
is explained by the ability of the policies to learn the distri-
butions of rewards. Although, these distributions are biased
as explained in § IV-C, the policies effectively home on the
actual attack as shown in fig. 8a With attacks having few
(<100) known artifacts the policies do not have enough time
for sufficient exploration before they exhaust the relevant CTI.

SAKLUCB-MS and SATS-MS are leading the way regard-
less the number of artifacts associated with the attack. The
performance of the SAEG01-MS and EG01-MS policies is
unstable. We display both in fig. 6 because neither one of
them is strictly better than the other. SAEG01-MS performs
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Fig. 5. The average reward as a function of the number artifacts associated with the actual attack for Rnd vs. MS artifact selection policies (RQs 2 to 3)
(γ ∗ = 1, Pf p = P f n = 0).

Fig. 6. The average reward as a function of the number artifacts associated
with the actual attack (RQ 3) (γ ∗ = 1, P f p = Pf n = 0).

better for attacks with up to 1K artifacts and EG01-MS
leads afterwards. Despite theoretical guarantees CUCB-MS
and SAUCB-MS have the worst performance.

Detailed results on performance of attacks with varying
number of related artifacts CTI and varying fraction of artifacts
shared with other attacks can be found in the Supplemental
Materials in figs. 23 to 25.

d) Efficiency through time: This experiment was executed
with a fixed budget for all attacks. Figure 7 depicts the
efficiency of the policies in terms of recall and average reward.
There is no policy that consistently outperforms the others
through time. EG policies and SATS-MS lead for the first
100 iterations (approx.). SAKLUCB-MS performs similarly
to SAUCB-MS and CUCB-MS for the first few iterations
breaking out and leading after a few hundreds of iterations
until the end. The recall does not reach 1 because even for
the oracle because some attacks have more artifacts than the
budget. Additional results with the actual attack absent in
AttackDB (tough case) can be found in the Supplemental
Materials in fig. 17. The average reward decreases even for
the oracle. This is explained by the skewed distribution of
the amount of CTI associated with the different attacks (see
fig. 12). In most cases the policies quickly find all relevant
artifacts and continue the investigation with no reward.9

9In general, the data collection can be stopped when the policy has attempted
searching all artifacts of the attack with the highest rank.

Fig. 7. Average reward and recall during the investigation (RQ 4)
(γ ∗ = 1, P f p = Pf n = 0).

E. Mild Case Imperfect CTI

The ability to home fast and accurately on correct leads is
crucial in resource constrained investigation (RQ 5). In fig. 8
policies are compared based on the reciprocal rank of the
actual attack during the investigation with different levels of
the CTI quality. SAKLUCB-MS and SATS-MS are the first
to pinpoint the actual attack with high and medium quality
CTI. Nevertheless, CUCB-MS and SAUCB-MS eventually
outperform SAKLUCB-MS and SATS-MS by a small mar-
gin. EG policies are the worst with EG01-MS falling far
behind because they fail to efficiently explore the reward
distributions.

With medium and low CTI quality, all �-greedy policies
failed to rank the actual attack as the highest even after
3000 iterations. All UCB-based policies are relatively robust
to the quality of the CTI. But the benefit of SAKLUCB-MS
and SATS-MS over CUCB-MS diminishes as the quality of
the CTI drops. (see fig. 8c) Approximately 1000 iterations
are sufficient to pinpoint the actual attack.
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Fig. 8. The normalized attack rank during the search process with various levels of CTI quality. (RQs 4 and 5) (γ ∗ = 1).

Fig. 9. MAP of SAUCB-MS and SAE01-MS as a function of Pf p and Pf n .
The actual attack is present (top, γ ∗ = 1) or absent (bottom, γ ∗ < 1) in the
AttackDB (RQ 6).

1) Varying Attack Novelty and CTI Quality: Next we focus
on the sensitivity of the targeted data collection to the quality
of CTI (RQ 6) for both mild and tough cases with different
levels CTI quality. We report MAP in fig. 9 to answer this
research question because MAP captures the performance of
the entire search process.

Surprisingly, the collection policies are very robust to Pf p

especially when the actual attack is not novel. It means
that superfluous information collected during the investigation
process does not mislead the MAB policies. In fact, UCB-
based policies perform significantly better than random as
long as P f p < 1 − Pf n . Nevertheless, at high levels of false
positives (Pf p > 0.3) SAEG01-MS outperforms SAUCB-MS
suggesting the choice of a policy provided insights about the
quality of the CTI. The collection policies are less robust
to P f n then they are to Pf p. Pf n mimics the attacker’s
effort to alter the observable artifacts produced by his
malware.

2) Adversarial Analysis: We conclude the experimental
section with a discussion and results highlighting the measures
attacker may take to impair the investigation process. MAB
algorithms prefer to exploit arms that were successful in the
past. To evade the discovery by MAB collection policies,
the actual attack should not stand out from the policy’s
point of view. That is, the probability of the actual attack
being identified as the actual attack should be similar to the
probability of other attacks in the knowledge base. Perturbing
or eliminating any evidence left by the attack is the trivial yet
very expensive solution from the attacker’s perspective. It is
also covered by previous experiments where P f n → 1.

Here we investigate a different approach of stalling the
policy during the search process (RQ 7). By creating an attack
that shares artifacts with many decoy attacks in the knowledge
base, an attacker may convince a policy to exploit the sharing
attacks instead of the actual attack. EG-based policies are
likely to focus on a wrong attack and stick with it. UCB-based
policies may fail focusing on any particular attack probing
each decoy with the same frequency as the actual attack.
This effect is magnified with the lower Gini coefficient of
the shared artifacts. Being forced to explore multiple attacks
in parallel, UCB requires putting additional effort to detect
the correct investigation lead. When the investigation budget
runs out, we would have few artifacts associated with many
different attacks instead of many artifacts associated with a
single attack.

We created an artificial evading attack (EA) by taking
30% of the artifacts associated with 55 different attacks in
the knowledge base, yielding a new attack associated with
5000 artifacts. The 55 attacks used to construct the EA were
selected randomly from all attacks associated with less then
1000 artifacts. The number 5000 was chosen because in
preliminary experiments, the stalling was effective for attacks
associated with at least 4000 artifacts.

Similar to RQ 5 the EA was set as the actual attack,
and its rank was reported. We compare the investigation
of the EA to the investigation of a typical non-evading
attack (non-EA) associated with similar number of artifacts in
fig. 10. EA is effective in delaying UCB-based policies. While
UCB1-MS policy pinpointed the non-EA after 750 iterations
(fig. 10a), it failed to detect the EA even after 3000 iterations
(fig. 10b). SAUCB-MS eventually detects the EA 2.5 times
later than it detects the non-EA (iteration 1250 vs. less than

Authorized licensed use limited to: ASU Library. Downloaded on March 12,2024 at 17:37:35 UTC from IEEE Xplore.  Restrictions apply. 

Isr
ael

-U
S BIR

D Fou
nd

ati
on



488 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 10. Evading vs. non evading attack with meium number of artifacts and
medium CTI quality (RQs 6, 4 and 7).

500 respectively). The SAUCB proves its advantage over
UCB1, utilizing the shared artifacts for efficient data collec-
tion. The EA confused the SAEG01-MS only a little bit in
most trials delaying the detection of the attack by at most
50%. Additional results with different CTI quality levels and
for EA associated with larger numbers of artifacts can be found
in the Supplemental Materials figs. 18 to 22.

Adversarial MAB, e.g. EXP3 [32], can be adapted to
mitigate the evasion heuristic discussed here. To support our
problem settings, EXP3 should assume predetermined set of
artifacts rather than predetermines sequence of rewards from
each arm.

VII. RELATED WORK

Various problems were modeled and solved successfully
using MAB algorithms, such as finding the optimal recom-
mendation in recommender systems [33], [34], trials automa-
tion [25], and communication networks [35]. Wang et al. [34]
are modeling items for recommendation as machines’ arms;
suggesting an item is modeled as pulling an arm and user
clicks are the reward. In trials automation, MAB was uti-
lized to select which trials to conduct. Similar to this work,
Liu et al. [25], are suggesting a variant of UCB1, which
adaptively keeps a user-specified ratio between the exploration
and exploitation components. The ratio mentioned above is
needed to work in high-stakes domains (i.e., domains that
cannot allow vast exploring freedom, e.g., education).

MAB was also applied successfully to security-related
problems [7], [12], [36], [37]. Ferdowsi et al. [12], suggest
MAB as one of two approaches for the detection of cyber

attacks on autonomous connected vehicle (ACV) sensors.
By modeling the possible subsets of the vehicle’s sensors as a
single armed slot machines, Ferdowsi et al. were able to apply
UCB algorithms in order to find the optimal subset sensors
(i.e., the most secure sensors). Based on the optimal subset,
the vehicle can function using sensors with lower error and
a possibly lower amount of injected data (i.e., data injected
by attackers who seek to damage the ACV). Yue et al. [7],
utilized MAB for seed selection in fuzz testing, modeling the
seeds as slot-machines. Also, they used the reward probability
of the slot-machines to assign energy to the seeds.

Similarly to this work, Grushka et al. [37], modeled the
problem of efficient data sampling as a special case of the
MAB problem. Due to resource constraints, Grushka et al.
select at each iteration k users to monitor and log their activity.
The selection of users is done by k consequent arm-pulls at
each iteration of the policy.

While in our case we are performing multiple arm pulls at
each iteration, they all collect the same artifact. Since we pay
budget for collecting an artifact, collecting k different artifacts
at a single iteration will not improve the budget consumption
of the policy. Also, the best policy in terms of reward presented
in [37] is the classic ε-greedy policy (ε = 0.2) in a k-pulls
variant. While ε-greedy is performing well empirically, it is
not regret bounded, and as we see in the experiments results,
it is less stable comparing to UCB1 (especially when the CTI
quality is impaired).

A. Dependent MAB

One of the first researches to formalize and study MAB
with dependent arms (henceforth, dependent bandits) was
presented by Pandey et al. [28]. They construct policies that
perform better then those for independent bandits by exploiting
the similarity between arms. Dependent arms are grouped
into clusters. A general two-level bandit policy (TLP) was
suggested and instantiated. TLP uses as a subroutine any
policy for independent bandits, using it first to choose a cluster
and then reused in the selected cluster to choose an arm to pull.
TLP may be more efficient to solve due to the lower number of
bandits (clusters can be seen as bandits to) to work with [28].
Thus, the method’s efficiency is affected by the input data, and
a big cluster size will impair the efficiency of the method.

B. Budgeted MAB

In the budgeted MAB problem, the player needs to pay a
cost after pulling an arm while having a limited resource set.
Xia et al. [38] extend two known MAB policies: UCB1 and
ε-greedy by embedding the cost term in their formulations.
Next, they evaluate and prove sublinear regret bounds of
the extended policies with respect to the budget. One of the
resulting budgeted policies is i-UCB, which uses an average
reward-to-cost ratio instead of only average reward in UCB1.
In our research, we assume a constant cost of one for every arm
pull, making i-UCB and the other modified policies behave
like the corresponding original policy. For instance, when the
cost is one, i-UCB behaves as UCB1.
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Besides the literature mentioned above, there also exist
some works studying MAB problems with multiple budget
constraints. For instance, Badanidiyuru et al. [39], studies the
bandits with knapsacks setting in which the total number of
plays is constrained by a predefined number in addition to the
total-cost budget constraint. Due to our cost policy, here, the
budget constraint is acting as both constraints: total plays cost
and the total number of plays together.

C. Reinforcement Learning

Our work is also related to reinforcement learning, which
tries to solve sequential decision problems as well. In [36] the
authors consider the use of adaptive reinforcement learning to
prevent damage caused by malicious attacks on IT systems.
The defender iteratively reinforces its defense by deciding
where and what defense to deploy to set optimal defenses
against the attacker.

VIII. CONCLUSION

In this paper, we strive to increase the level of automation
during hunting by collecting artifacts most relevant to the
currently investigated yet unknown attack. We formulated
the problem of targeted data collection as a variant of the MAB
problem, introducing the Multi Shared-Arms Bandit (MSAB)
problem in § III-B. By utilizing the interrelations of attacks,
MSAB increases the effectiveness of the data collection during
threat hunting, a critical aspect in resource constrained sys-
tems. We investigate shared-arms (SA) variants of four MAB
policies, UCB1, ε-Greedy, Thompson sampling, and KL-UCB
and evaluate them on a real world dataset of 53K behavioral
reports. We provide theoretically proven bounds on the regret
of the SA variant of UCB1 (SAUCB) in § IV-D.

Results are showing the superiority of the SA variants over
other policies, detecting the relevant attack quicker by feeding
the policy with the added information from the shared-arms
pulls. The proposed policies are robust to perturbations in the
collected information captured by the quality of the CTI but
are significantly affected by the number of artifacts associated
with the investigated attack and the percent of shared artifacts.
Adversarial analysis of the collection policies reveals that
UCB-based policies are exposed to stalling, which is partially
mitigated using the SAEG01 policy.

Future Work: (1) Measure the reward of artifacts based on
their actual contribution to the inference of attack techniques,
attack attribution, and attack detection tasks. (2) Extend the
MSAB theory to accommodate arbitrary cost and arbitrary
reward. (3) Employ reinforcement learning for artifacts selec-
tion policies once an attack is chosen. (4) Use machine
learning to select promising investigation leads at the very
beginning of each investigation instead of probing all attacks
first. (5) Future extensions may follow [37] to employ schemes
where multiple artifacts are retrieved in parallel. (6) Future
adaptation of CUCB to MSAB may definitely improve the
performance of SA variants of policies suggested in this paper.
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