
Information Sciences 642 (2023) 119147

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

INSTINCT: Inception-based Symbolic Time Intervals series

classification

Omer David Harel a,∗, Robert Moskovitch a,b

a Software and Information Systems Engineering, Ben Gurion University of the Negev, Be’er Sheva, 8410501, Israel
b Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA

A R T I C L E I N F O A B S T R A C T

Dataset link: https://
github .com /omerh18 /INSTINCT

Keywords:

Symbolic Time Intervals
Classification
Deep learning
Inception

Symbolic Time Intervals (STIs) describe events having a non-zero time duration, which occur
in a wide range of application domains. In this paper, we target the challenge of STIs series
classification (STIC), which refers to the categorization of series of STIs. Over the recent years
several advancements have been made in STIC, all of which are based on either distance-metrics
or feature-based traditional classifiers, mostly relying on hand-engineering of features. Due to
the high computational cost of either distance calculation or feature extraction, most methods
also have quite little potential to scale. We introduce INSTINCT – a novel deep learning-based
framework for STIC, which 1) proposes an almost fully information-preserving transformation
of raw STIs series into real matrices, and 2) presents a novel ensemble of deep inception-
based convolutional neural networks for their classification. The evaluation is applied to the
six real-world STIC benchmark datasets and demonstrates that INSTINCT significantly improves
accuracy over seven state-of-the-art methods, as well as over three deep learning-based baselines.
In addition, a comprehensive architecture study of INSTINCT is conducted as well as a scalability
analysis, reporting an overall time complexity which is linear in each of the main properties of
the input STIs series.

1. Introduction

Symbolic Time Intervals (STIs) series describe sets of events that occur over time, in which each event may have a non-zero time
duration. For example, the period of time the green light is on in a traffic light or the time period a patient is prescribed on a
medication. Hence, compared to the use of instantaneous events only, temporal data representation as series of STIs offers a richer,
more flexible representation, which also provides further insights into the underlying events and the temporal relations among them
[36].

Over the recent years, a constant growth has been observed not only in the availability of temporal data, but also in the data het-
erogeneity (e.g., diverse variables, sampling frequencies, time durations etc.). Thus, STIs series data as well as algorithms processing
them, have recently become highly valuable in a large variety of real-world application domains. That is, including the classification
or outcome prediction in Electronic Health Records (HER) [3,28,29], sign language transcriptions [34], and human activity recog-
nition [22]. However, alongside the promising potential, the high data volumes also impose a burden on such algorithms, which
ought to scale well to properly address real-world scenarios. In that respect, deep learning-based methods, which are capable of

* Corresponding author.

Isr
ael

-U
S BIR

D Fou
nd

ati
on
Available online 16 May 2023
0020-0255/© 2023 Elsevier Inc. All rights reserved.

E-mail address: omerdavi@post.bgu.ac.il (O.D. Harel).

https://doi.org/10.1016/j.ins.2023.119147
Received 23 January 2023; Received in revised form 7 May 2023; Accepted 10 May 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
https://github.com/omerh18/INSTINCT
https://github.com/omerh18/INSTINCT
mailto:omerdavi@post.bgu.ac.il
https://doi.org/10.1016/j.ins.2023.119147
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2023.119147&domain=pdf
https://doi.org/10.1016/j.ins.2023.119147

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 1. Illustration of a series of STIs taken from the healthcare domain, representing a clinical record of a patient potentially suffering from diabetes type 2, collected
over a time period of ten months.

straight-forwardly utilizing GPU parallel computation abilities, may be of particularly high interest to the research community as
well as to relevant industrial use cases.

Fig. 1 illustrates an example of a series of STIs taken from the healthcare domain, which represents a clinical record of a patient
potentially suffering from diabetes type 2, collected over a time period of ten months. At first, the patient was diagnosed with
hyperlipidemia, i.e., an excess of lipids or fat in their body. Then, high levels of glucose as well as of HbA1c (i.e., percentage of red
blood cells having sugar-coated hemoglobin) had been measured, due to which the patient sought medical advice, in which he was
recommended a diet. The patient followed their diet for four months. During this time period, glucose and HbA1c levels decreased
back to normal, while fat levels were still high. Eventually, after giving-up diet, levels of both glucose and HbA1c increased out of
the normal range of values again.

In this paper, we focus on the problem of STIs series classification (STIC), which refers to the categorization of entities that are
described by series of STIs. In Fig. 1, the problem of STIC may, for example, refer to the automatic categorization of patients into
diabetic or non-diabetic based on their collected measurements. Alternatively, it may refer to the prediction whether or not a patient
will be diagnosed with diabetes type 2 during a specified time period (e.g., during the next half-a-year). Thus, potentially assisting
in early diagnosis and providing a suitable drug treatment, if necessary.

Since STIs have arbitrary-long time durations, they may overlap and form more complex temporal relations compared to other
forms of temporal data (e.g., time series or sequential data), in which events are instantaneous and may be orderly represented. These
temporal complexities should therefore be well-captured and modeled by algorithms for STIC. In that respect, the problem of STIC
somewhat resembles computer vision tasks, in which spatial information within images should be utilized for image classification,
object detection etc. In the field of computer vision, modern deep convolutional neural networks (CNNs) have unarguably been the
most successful, while only recently attention-based methods were also demonstrated capable of achieving comparable results [23].
Methods based on convolutional kernels and convolutional neural networks have, in fact, recently took-off in the related task of time
series classification as well [5,14], reaching state-of-the-art performance. Therefore, the idea of using advanced convolution-based
neural architectures for STIC, combined with a transformation of the raw STIs series data into an appropriate representation to which
they can be effectively applied, seems to hold a promising potential for improvement.

Inception-based CNNs, in particular, have a significant potential advantage over conventional CNNs in the context of STIC. The
inception module was primarily proposed in [40] for image recognition, and since then it has been further improved and extended in
[12,39,41]. While the inception module serves as a convolutional layer as part of a CNN, it enables to apply multiple convolutional
kernels of varied sizes in parallel to the input images. That is unlike a conventional convolutional layer, in which only a uniform
kernel size is used. When applied to temporal data, this property of the inception module may potentially enable the detection of
useful patterns of varied lengths within the data. As will be demonstrated in Section 5, this is one of the keys for the promising
classification results of the framework proposed in the paper, when processing raw STIs series of various time spans and densities.

Existing methods for STIC can be broadly divided into distance-based or feature-based classifiers. Distance-based classifiers,
among which are Artemis [16] and IBSM [17], define a measure to quantify the distance between two STIs series. The computed
distances are then typically used in a k-NN formulation for classification. More recent methods, including KarmaLegoSification [27],
STIFE [4], Z-Embedding [20], and SMILE [31]; however, are feature-based. Such methods mostly extract either static, aggregative
features or features that are based on variations of temporal patterns or shapelets mined from the STIs series data. The extracted
features are then fed into traditional off-the-shelf classifiers (e.g., SVM, BDT), whose classification results are, of course, dependent
on the quality of the pre-computed features, and their degree of expressiveness of the classification-informative aspects within the
underlying data. That is unlike a deep learning approach as we present in this paper, which aims to automatically learn the feature
representation directly from the data, and as part of the classification task.

In addition, several existing methods also rely on predefined parameters, e.g., support and gap [20], that sometimes require
domain-specific knowledge and should be set differently for each dataset, which limits their flexibility to some extent. As described
in [31], due to the high computational cost of either distance calculation or feature extraction, most of these methods also have little
potential scaling to large datasets.

The main contributions of the paper are the following.

• Novelty. We introduce INSTINCT – a novel deep learning-based framework for STIC, including:
– An almost fully information-preserving transformation of raw STIs series into real matrices, which capture the series’ STIs that

Isr
ael

-U
S BIR

D Fou
nd

ati
on
2

are active over time.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

– Classification of the transformed matrices via a novel ensemble of deep inception-based convolutional neural networks for
STIC, inspired by the Inception-v4 network for image recognition [39].

• Evaluation. The paper presents a rigorous and extensive evaluation of the proposed framework which is threefold.
– Classification performance. INSTINCT is compared to seven state-of-the-art methods, as well as to three deep learning-

based baselines applied to the transformed representation, when evaluated on the six real-world single-label STIC benchmark
datasets [25,30]; demonstrating superior performance in terms of both the accuracy, where statistical significance is shown,
and AUC.

– Scalability. An empirical scalability analysis of INSTINCT is presented, reporting a linear dependency between its overall
runtime and each of the main properties of the input STIs series datasets.

– Architecture study. A comprehensive study of INSTINCT’s network architecture is conducted, focusing on the trade-off
between the classification accuracy and training time, as well as on the convergence and sensitivity of the proposed framework.

• Code and data availability. The source code of INSTINCT, as well as the code and datasets used for the experiments, have been
made publicly available.1

The rest of the paper is organized as follows: Section 2 formalizes the problem definition of STIC and reviews the related work in
this area of research. Section 3 introduces the proposed INSTINCT framework, elaborating on its core building blocks, and Section 4
details the experimental setup designed for the framework’s evaluation. Finally, Section 5 reports the experimental results and
Section 6 concludes the paper and discusses future research directions.

2. Background

In this section we first provide a few preliminary definitions, followed by the STIC problem formulation. Then, we present the
evolvement of the field of STIC along the past two decades, reviewing the major strengths and weaknesses of state-of-the-art methods.

2.1. Problem setting: Symbolic Time Intervals series classification

Definition 1 (STI). Let Σ be an alphabet of symbols (i.e., event-types). A Symbolic Time Interval (STI) 𝐼 = (𝑠𝑦𝑚𝑏𝑜𝑙, 𝑠, 𝑓) is a triplet of
a symbol, a start-time, and a finish-time, such that 𝐼.𝑠𝑦𝑚𝑏𝑜𝑙 ∈ Σ and 𝐼.𝑠 < 𝐼.𝑓 . An STI 𝐼 is considered active during its time span, i.e.,
from 𝐼.𝑠 to 𝐼.𝑓 .

Definition 2 (STIs Series). An STIs series 𝑆 = (𝐼1, 𝐼2, … , 𝐼𝑘) is a lexicographically sorted series of STIs, such that ∀𝐼𝑖, 𝐼𝑗 ∶ 𝑖 < 𝑗 ≡ 𝐼𝑖.𝑠 <
𝐼𝑗 .𝑠 ∨ (𝐼𝑖.𝑠 = 𝐼𝑗 .𝑠 ∧ 𝐼𝑖.𝑓 < 𝐼𝑗 .𝑓) ∨ (𝐼𝑖.𝑠 = 𝐼𝑗 .𝑠 ∧ 𝐼𝑖.𝑓 = 𝐼𝑗 .𝑓 ∧ 𝐼𝑖.𝑠𝑦𝑚𝑏𝑜𝑙 < 𝐼𝑗 .𝑠𝑦𝑚𝑏𝑜𝑙), i.e., 𝑆 is first sorted by the STIs’ start-time, then by
their finish-time, and finally by their symbol. The length of 𝑆 refers to its total time span, i.e., |𝑆| = max

1≤𝑗≤𝑘
𝐼𝑗 .𝑓 − 𝐼1.𝑠, while its size is

defined by the number of STIs within 𝑆, i.e., 𝑘.

The STIC problem formulation, which we tackle in this paper, is then defined as follows.

Definition 3 (The STIC Problem Definition). Let a collection of STIs series 𝑋 = {𝑆1, … , 𝑆𝑛}, a set of predefined class labels 𝑌 , and a
dataset 𝐷 = {(𝑆1, 𝑦1), … , (𝑆𝑛, 𝑦𝑛)}, in which ∀𝑖 ∶ 𝑆𝑖 ∈𝑋 is an STIs series, and 𝑦𝑖 ∈ 𝑌 is its corresponding class label. The STIC problem

is to learn a classifier 𝑓 on 𝐷, which maps any (possibly unseen) input STIs series 𝑆 to a probability distribution over the set of class
labels 𝑌 .

Example 1. Fig. 2 illustrates a labeled STIC dataset 𝐷 = {(𝑆1, 𝑦1), (𝑆2, 𝑦2), (𝑆3, 𝑦3)}, in which ∀1 ≤ 𝑖 ≤ 3: 𝑆𝑖 is an STIs series defined
over the symbols alphabet Σ = {𝐴, 𝐵, 𝐶}, and 𝑦𝑖 ∈ {0, 1} is its corresponding class label, which stands for a binary classification task.
In 𝑆1, for example, there are two STIs having the symbol 𝐴 (green), two additional STIs having the symbol 𝐵 (orange), and three
STIs having the symbol 𝐶 (blue). The earliest STI in 𝑆1 which has the symbol 𝐴 is said to be active during the time range [0, 3], while
the next one is active during [6, 9], and so on. Overall, 𝑆1 includes a total number of seven STIs which span from timestamp 0 to 10,
similar to 𝑆3. Therefore, the size of both 𝑆1 and 𝑆3 is seven, while their length equals to ten time-units. That is unlike 𝑆2, which is
eight time-units long and includes a total number of only four STIs. Thus, in the given example, both the series 𝑆1 and 𝑆3 have been
assigned the same class-label of 0, as they share much resemblance in terms of their size, length, time durations etc., while 𝑆2 has
been assigned the class-label 1.

2.2. Related work

Research in the field of STIC has significantly evolved along the past two decades. State-of-the-art methods for STIC can be broadly
categorized into the following main two approaches: distance-based classifiers [16,17], on which earlier studies have focused; and
feature-based classifiers [3,4,20,27,30,31], that have been spread more widely in recent times. The majority of state-of-the-art

Isr
ael

-U
S BIR

D Fou
nd

ati
on
3

1 https://github .com /omerh18 /INSTINCT.

https://github.com/omerh18/INSTINCT

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 2. Illustration of a labeled STIC dataset which includes three STIs series defined over the symbols alphabet Σ = {𝐴, 𝐵, 𝐶}. The series span along at most 10
time-units, and they include a varying number of STIs – from 4 in 𝑆2 to 7 in both 𝑆1 and 𝑆3 . Class labels 𝑦1≤𝑖≤3 ∈ {0, 1}, which stands for a binary classification task.

methods for STIC – either distance-based or feature-based, utilize the temporal relations that hold between pairs of STIs, which are
most commonly defined using Allen’s finite set of 13 temporal relations [1]. Allen’s relations include before, meets, overlaps, starts,
contains, finished-by; their corresponding inverse relations: after, met-by, overlapped-by, started-by, during, finishes; and equals, which is
its own inverse relation.

2.2.1. Distance-based methods

Distance-based methods for STIC mostly define a measure to quantify the distance between two STIs series. The computed
distances are then typically used in a k-NN formulation for classification.

Artemis [16] quantifies the distance between two STIs series based on the fraction of pairwise temporal relations (i.e., temporal
relations between pairs of STIs) that they have in common. The higher the fraction of pairwise temporal relations that the two series
share, the smaller the distance between them. Yet, the actual time durations of neither the underlying STIs nor the pairwise temporal
relations between them are utilized for classification, which potentially limits the method’s predictive power. As elaborated in [20],
this method is also quite expensive computation-wise, having a time complexity of 𝑂(|𝑆1| ⋅ |𝑆2| ⋅ |Σ|) for calculating the distance
between each pair of STIs series 𝑆1 and 𝑆2 defined over the symbols alphabet Σ.

In [17], IBSM was proposed as a more informative distance measure. IBSM represents each time point along the entire STIs series’
time span as a binary vector, which indicates for each symbol whether or not there is an STI having that symbol which is active
during the said time point. To calculate the distance between two STIs series, vectors are then re-sized into a uniform (maximal) size
through interpolation. Thus, in contrast to Artemis, IBSM does consider the time durations of the STIs, but does not explicitly refer
to the temporal relations among them for distance measuring. In terms of computational complexity, while distance computation is
relatively fast, resizing might yield substantially longer runtimes. That is especially in datasets showing high variance in the STIs
series’ lengths as well as in the number of symbol types that they include. Overall, calculating the distance between two STIs series
𝑆1 and 𝑆2 defined over the symbols alphabet Σ in IBSM, yields a time complexity of 𝑂(|Σ| ⋅ |𝑆1| + |Σ| ⋅ |𝑆2| + |Σ| ⋅ max

𝑆𝑖∈𝐷
|𝑆𝑖|), which

sums-up to 𝑂(|Σ| ⋅ max
𝑆𝑖∈𝐷

|𝑆𝑖|).
2.2.2. Feature-based methods

Feature-based methods mostly extract either static, aggregative features or features that are based on variations of temporal
patterns (shapelets) mined from STIs data or even sequential data. The extracted features are then fed into common classifiers (e.g.,
SVM, BDT), whose classification results are, of course, directly dependent on the degree to which the preconceived features represent
all the classification-informative aspects within the underlying STIs data.

Early studies in the field of feature-based STIC [3,27,30] were mostly applied to healthcare temporal measurements. These
measurements have not been always represented as STIs in their raw form, but rather as multivariate time series, which are first
abstracted into STIs series representation via temporal abstraction [26,27]. Then, variations of temporal patterns or shapelets of
any size are typically extracted. For that, efficient mining algorithms of either sequential patterns [2], association rules [32], or
TIRPs, i.e., time intervals-related patterns [9,28] are taken advantage of. Finally, the discovered shapelets are used as features for
classification. However, despite the rich information of the discovered arbitrary-long shapelets, the predictive power of most of these

Isr
ael

-U
S BIR

D Fou
nd

ati
on
4

methods might still be limited due to the inexpressiveness of the shapelets’ time durations in the classification features. In addition,

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

due to the exponential time complexity of the preliminary process of pattern mining [9,27], most of these methods also have a quite
little potential to scale.

More recently, in [4], the STIFE framework has been proposed. STIFE extracts both 1) static, aggregative features; 2) class-medoid
features, using the IBSM distance measure [17]; and 3) class-distinctive pairwise temporal relations from the STIs series, which
are then fed into a random forest classifier. Due to the large variety of extracted features, STIFE achieved significantly improved
classification performance. Yet, the slight information exploited regarding the STIs’ time durations, alongside the inability to capture
potentially valuable TIRPs that include more than just a pair of STIs, still limit the framework’s predictive power. In addition, as
described in [4], STIFE’s memory requirements might be impractical for large symbols alphabet sizes |Σ|. Assuming a dataset of 𝑛
STIs series of size 𝑚, STIFE’s training time and memory have quadratic complexity in both 𝑛, 𝑚, and |Σ|. Given a single STIs series,
its feature extraction time complexity is 𝑂(𝑚 ⋅ (𝑙𝑜𝑔(𝑚) + |Σ|)), which might be longer compared to IBSM.

In [20], a novel spectral embedding of STIs series was proposed, called Z-Embedding. The embedding is based on the pairwise
temporal relations that the STIs series include and is later used in several traditional classifiers for classification. First, the entire
STIs series dataset is converted into a bipartite graph representation with two vertex sets of (1) STIs series and (2) pairwise temporal
relations. Then, a pruning step is performed based on predefined minimal and maximal support (frequency) thresholds, as well as
a maximal gap constraint, which limits the allowed time duration between two STIs among which the temporal relation is before.
Note that the appropriate values for these parameters may differ from one dataset to another and setting them might sometimes
also require domain-specific knowledge, which makes the method less plug-and-playable. Finally, the graph is represented as a bi-
adjacency matrix from which feature vectors are created through regularization and singular value decomposition (SVD). Similar
to STIFE, this method does not exploit information regarding neither the STIs’ time durations nor potentially valuable TIRPs that
include more than two STIs. Assuming a dataset of 𝑛 STIs series of size 𝑚, the time complexity of creating the bi-adjacency matrix is
𝑂(𝑛 ⋅𝑚2 + 𝑛 ⋅ |Σ|2), while the process of SVD has a time complexity of 𝑂(𝑛 ⋅ |Σ|2 ⋅𝑚𝑖𝑛(𝑛, |Σ|2)).

Building upon STIFE, the SMILE framework was introduced in [31], achieving state-of-the-art classification accuracy in STIC.
Beyond the extraction of static features, class-medoid features, and pairwise temporal relations employed in STIFE; SMILE also
extracts features from e-lets, which are random sub-series of potentially more than just a pair of STIs. These additional features aim
to address the main deficiencies of STIFE, by capturing potentially valuable information found in either the STIs’ time durations
or in shapelets that include an arbitrary large number of STIs. However, as reported in [31], SMILE‘s feature extraction has a high
computational cost, having its overall time and memory complexity inferior to STIFE.

In the next section we introduce the INSTINCT framework for STIC. INSTINCT is inspired, inter alia, by recent advancements made
in convolutional neural networks and in deep learning-based temporal data processing. Hence, before elaborating on INSTINCT, we
first present succinct reviews of the related research fields of computer vision and time series classification, where advanced deep
learning architectures in general, and convolutional neural networks in particular, have widely spread in recent times.

2.2.3. Computer vision

The use of deep learning in the field of computer vision has significantly evolved over the recent decades. Specifically, as stated
in [23], convolutional neural networks (CNNs) have been the de-facto standard for a large variety of computer vision tasks for the
past few years. Starting with LeNet-5 [19], CNNs have typically had a common structure. That is, using several stacked convolutional
layers (possibly combined with max pooling) followed by at least a single fully-connected layer. However, the use of CNNs for
computer vision tasks has really took-off since AlexNet [18] achieved the best classification results, at that time, on ImageNet. Since
then, the quality of backbone CNN architectures significantly improved either by going deeper or wider. Such backbone networks
include VGGNet [38], ResNet [10], and GoogLeNet [40], which is also referred as Inception-v1.

The original inception paper [40] presented a CNN architecture for image recognition relying on the inception module. While
the inception module serves as a convolutional layer as part of a CNN, it enables to apply multiple convolutional kernels of varied
sizes in parallel to the input images. That is unlike a conventional convolutional layer, in which only a uniform kernel size is used.
Thus, potentially increasing the flexibility of the network and the ability to detect useful patterns of diverse sizes within visual inputs.
Since then, the inception network has been further extended forming Inception-v2 with the introduction of batch normalization [12],
Inception-v3 using additional factorizations [41], and Inception-v4 and Inception-resnet [39], adding residual connections.

However, deep learning-based methods for computer vision are, of course, not limited to CNNs. Following the resounding success
of attention and transformers in the field of natural language processing, they have recently propagated into the vision community,
achieving at least comparable results to CNN-based architectures in tasks such as object detection and image segmentation [23]. In
addition, as described in [46], the use of multimodal features (e.g., language information, user clicks, etc.) beyond just visual features,
was found highly beneficial for image retrieval [45] as well as for fine-grained image classification [46,48]. Hand-crafted visual
feature descriptors were found useful as well for image feature representation [47], especially when seeking for better interpretability.

We highlight that this subsection by no means intends to present a complete review of the field of computer vision, but rather a
concise review, which lays the relevant foundations for the introduction of the proposed INSTINCT framework for STIC in Section 3.

2.2.4. Time series classification

Until recently, time series classification methods have mostly relied on traditional off-the-shelf classifiers, employed on a precon-
ceived feature representation of the raw data. Based on the nature of the extracted features, these methods can be broadly categorized
into distance-based [37], dictionary-based [33], and shapelets-based [11] methods, as well as transformation ensembles [21]. Fol-
lowing similar principles, several enhanced methods have been recently proposed as well [24,35], motivated by the relatively high

Isr
ael

-U
S BIR

D Fou
nd

ati
on
5

computational complexity of earlier methods.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 3. Illustration of INSTINCT’s pipeline – from an input raw STIs series into an output probability distribution over class labels. Initially, the input series is
transformed into a two-dimensional representation as a matrix which captures the series’ STIs that are active over time. Then, the transformed matrix is fed into
INSTINCT’s ensemble of three deep CNN models for STIC. Final classification results are obtained through averaging the output probability distributions of the three
individual models.

Over the recent years, however, another approach for time series classification has been developed, taking advantage of convo-
lutional kernels and convolutional neural networks [5,14,43]. When applied to raw time series data, convolutions can be seen as
sliding one-dimensional filters over raw time series, which unlike images, exhibit only a single time dimension instead of two spatial
dimensions [13]. In particular, several inception-based methods have been recently proposed for time series classification, either
relying on pre-trained or custom architectures [14]. The most recent advancements in convolution-based time series classification,
e.g., InceptionTime [14] and ROCKET [5], have reached state-of-the-art accuracy while also reporting significant scalability. Since
then, several enhanced variations of ROCKET have been proposed as well, aiming to further improve either runtime [6] or accuracy
[42].

Finally, as described in [13], Recurrent Neural Networks (RNNs) have rarely been applied for time series classification, but rather
for the purpose of time series forecasting. More advanced concepts arising from the field of natural language processing, such as
attention and transformers, have made their very first steps in time series classification only recently in [44,49].

3. INSTINCT: Inception-based Symbolic Time Intervals series classification

In this section we introduce INSTINCT – a novel deep learning-based framework for STIC. INSTINCT is comprised of two main
phases – Transform and Classify. First, the complete pipeline of INSTINCT is described from a bird’s-eye view, after which we
elaborate on each of its two main phases.

An overview of INSTINCT’s flow – from an input raw STIs series into an output probability distribution over class labels, is
illustrated in Fig. 3 (top to bottom). Initially, the raw STIs series at the top is transformed into a two-dimensional representation as a
matrix which captures the series’ STIs that are active over time. Unlike images, this matrix exhibits only a single spatial dimension,
i.e., the time dimension, while the STIs’ symbol types (e.g., 𝐴, 𝐵, and 𝐶) are represented as channels, as shown in the middle of
Fig. 3. We refer to the transformed matrix as an ASTIM, which we will formally define in the next subsection.

Then, the transformed ASTIM is fed into INSTINCT’s novel deep CNN architecture for STIC, which is inspired by the Inception-v4
network for image recognition [39]. In that respect, it is important to highlight that the initial transformation by no means intends
to perform feature extraction, but rather to preserve the raw information of the input STIs series through the created ASTIMs to the

Isr
ael

-U
S BIR

D Fou
nd

ati
on
6

maximum extent. That is to enable the network to automatically learn an appropriate representation of the underlying data, rather

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

than relying on a preconceived, hand-crafted feature representation. As illustrated at the bottom of Fig. 3, INSTINCT also uses an
ensemble of three classifiers, which are identical except for their randomly initialized weight values, to increase the robustness of
the proposed framework. The final output probability distribution is then obtained through averaging the probability distributions
of each of the three individual classifiers.

3.1. Phase I: Transform – STIs series representation as ASTIMs

INSTINCT’s initial Transform phase converts raw input STIs series (Definition 2) into a two-dimensional representation as real
matrices, which capture the series’ STIs that are active over time. The transformed matrices are referred as Active-STIs Matrices
(ASTIMs), which are defined as follows.

Definition 4 (activity vector). Let 𝑆 be an STIs series defined over the symbols alphabet Σ, and a symbol 𝜎 ∈ Σ. The activity vector of
𝜎 in 𝑆 is a |𝑆| dimensional vector 𝑎𝑆

𝜎
such that: ∀0 ≤ 𝑡 < |𝑆| ∶ 𝑎𝑆

𝜎
[𝑡] = |{𝐼 ∈ 𝑆|𝐼.𝑠𝑦𝑚𝑏𝑜𝑙 = 𝜎 ∧ 𝐼.𝑠 ≤ 𝑡 < 𝐼.𝑓}|. That is, 𝑎𝑆

𝜎
[𝑡] stands for

the number of STIs in 𝑆 having the symbol 𝜎 that are active during the time-unit 𝑡.

Definition 5 (ASTIM). Let 𝑆 be an STIs series defined over the symbols alphabet Σ. The Active-STIs Matrix (ASTIM) of 𝑆 is a matrix
𝐴𝑆 ∈ℝ|Σ|×|𝑆| such that: ∀𝜎 ∈ Σ, 0 ≤ 𝑡 < |𝑆| ∶𝐴𝑆

𝜎,𝑡
= 𝑎𝑆

𝜎
[𝑡], where 𝑎𝑆

𝜎
is the activity vector of 𝜎 in 𝑆 (Definition 4).

Example 2. At the top of Fig. 3, INSTINCT’s transformation of an input raw STIs series 𝑆 into its corresponding ASTIM 𝐴𝑆 (Defini-
tion 5) is illustrated. Since 𝑆 is defined over the symbols alphabet Σ = {𝐴, 𝐵, 𝐶}, the transformed ASTIM 𝐴𝑆 is comprised of three
activity vectors – one vector for each symbol type 𝜎 ∈ Σ. Each such vector 𝑎𝑆

𝜎
represents the number of STIs having the symbol 𝜎 that

are active during each time-unit 0 ≤ 𝑡 < |𝑆|, as defined in Definition 4. For example, at time-unit 0 there is only a single active STI
which has the symbol 𝐴. Therefore, 𝑎𝑆

𝐴
[0] = 1, while both 𝑎𝑆

𝐵
[0] and 𝑎𝑆

𝐶
[0] equal to zero.

Since no ordinal relationship holds between the symbols of an alphabet Σ and their spatial proximity is arbitrary, they are
represented as channels within the transformed ASTIMs rather than as another spatial dimension (Fig. 3). This property enables
INSTINCT’s deep CNN architecture to slide one-dimensional filters over the ASTIMs’ time dimension, where each filter applies to all
the |Σ| channels (i.e., symbol types) together. An additional important benefit of the proposed representation is the ability to explore
significantly longer convolutional filters at relatively lower model complexities compared to computer vision tasks. That is due to
the one less spatial dimension of the transformed ASTIMs compared to images.

Note that raw STIs series may of course differ in their overall time span, as well as in the number of symbol types that they
include. Since the series’ ASTIMs are later fed into a deep convolutional neural network for classification, it is mandatory to enforce
a uniform ASTIM size amongst all the STIs series in a dataset. For that purpose, in a previous work [17], interpolation has been
suggested. In this paper, however, conventional vertical and horizontal zero-padding of ASTIMs (i.e., in both the time and symbol
axes) is preferable. That is mainly due to its simplicity and computational efficiency, alongside the fact that the notion of the original
length of the STIs series, which has been a key feature for classification in several previous works [4,31], is preserved. Overall, given
a dataset of 𝑛 input STIs series 𝐷 = {𝑆1, … , 𝑆𝑛} defined over the symbols alphabet Σ, the Transform phase can be formulated as a
function 𝑓 ∶𝐷→ℝ

|Σ|×max
𝑆𝑖∈𝐷

|𝑆𝑖|
such that ∀𝑆𝑖 ∈𝐷 ∶ 𝑓 (𝑆𝑖) =𝐴𝑆𝑖 , for 𝑆𝑖 ’s ASTIM 𝐴𝑆𝑖 as defined in Definition 5.

When multiple STIs which have the same symbol do not overlap, in which case the transformed ASTIMs are completely binary, the
original STIs series can be fully reconstructed from them (a pseudo-code for raw STIs series reconstruction is provided in Appendix B).
This property stands for the invertibility of the Transform function, which indicates that the complete information of raw STIs series
is preserved through their ASTIMs, and that no information is lost prior to the classification. Otherwise, when multiple STIs which
have the same symbol indeed overlap, the ASTIMs’ activity vectors are no longer binary, but rather they count the total number of
active STIs in each time-unit, as defined in Definitions 4–5. In such case, we note that only these specific overlapping STIs cannot
be fully reconstructed from the transformed ASTIMs, since their start and finish end-points cannot be non-ambiguously determined.
However, although theoretically possible, in practice, this scenario is quite rare, as in many application domains it does not always
make sense to have several events of the same type occurring simultaneously. In fact, amongst all the real-world STIC benchmark
datasets [25,30], such non-binary ASTIM cells constitute even less than 0.3% of the cells of all the transformed ASTIMs. Thus,
although it might be an interesting theoretical challenge, the amount of raw information hidden from the classifier building upon
the proposed representation, seems to be practically negligible and is expected to have only minimal impacts on classification.

Complexity. Let 𝐷 = {𝑆1, … , 𝑆𝑛} be a dataset of 𝑛 𝑚-sized STIs series defined over the symbols alphabet Σ. A naïve implementation
of INSTINCT’s Transform phase may traverse the series’ STIs in an arbitrary order, and incrementally increase the counts of their
activity time frames within the transformed ASTIMs. Thus, yielding a time complexity of 𝑂(𝑚) for a single STIs series, and 𝑂(𝑛 ⋅𝑚)
for the complete dataset, if no parallelism is utilized (although indeed possible). Memory complexity for the entire dataset sums to
𝑂(𝑛 ⋅ |Σ| ⋅ max

𝑆𝑖∈𝐷
|𝑆𝑖|), which is the total size of all the STIs series’ ASTIMs. Note that since the ASTIMs’ dimensionality depends on the

length of the series, this representation might be somewhat wasteful when processing rather sparse STIs series data. In a future work,

Isr
ael

-U
S BIR

D Fou
nd

ati
on
7

we intend to propose an alternative sparse ASTIM representation.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 4. Illustration of INSTINCT’s inception-based network architecture for STIC.

3.2. Phase II: Classify – Inception-based classification of ASTIMs

In INSTINCT’s Classify phase, the ASTIMs which have been created in the preliminary Transform phase are classified by a novel
ensemble of three deep CNN models for STIC, inspired by the Inception-v4 network for image recognition [39]. First, we concisely
describe how convolutional layers and convolutional neural networks can be utilized for STIC as part of INSTINCT’s pipeline. Then,
the proposed inception-based network architecture is presented, followed by a detailed description and formulation of INSTINCT’s
inception module designed for STIC.

As a convolutional neural architecture, INSTINCT’s network relies on convolutional layers, which slide filters over the transformed
ASTIMs to extract non-linear time-invariant features from them. Through stacking multiple such layers, higher order, hierarchical
features can be extracted as well, which are expected to further improve the classification performance. As described in the previous
subsection, ASTIMs exhibit only a single spatial dimension, i.e., the time dimension, whereas the symbols are represented as channels.
Therefore, a convolutional layer in INSTINCT slides one-dimensional filters over the ASTIMs’ time dimension, where each filter
applies to all the symbols together. Due to the one-less spatial dimension compared to images, these filters can be much longer
compared to the filters typically employed in computer vision architectures.

INSTINCT’s network architecture for STIC, which maps an input ASTIM 𝐴𝑆 ∈ℝ|Σ|×|𝑆| into an output probability distribution over
class labels 𝑦̂ ∈ 𝐶 , is depicted in Fig. 4. First, three inception modules are stacked, such that the output of each module is directly
fed as input into the successive module. As will be elaborated later in this subsection, INSTINCT’s inception module simultaneously
applies multiple one-dimensional convolutional kernels of varied sizes to the input ASTIM, which are then concatenated to form
the module’s output. In addition, as illustrated in Fig. 4, residual connections are used, as suggested in [39]. That is, to mitigate
the problem of vanishing gradients [10]. Through the residual connections, for example, the input of the first inception module in
INSTINCT is also added via a shortcut linear connection to the third module’s input, which stands for a residual block size of two
modules, in similar to ResNet [10].

Next, to convert the output of the third inception module into a feature vector, either flattening and local average pooling (FAP),
or global average pooling (GAP) are typically employed. When applied to STIs series data represented as ASTIMs, GAP shrinks the
whole arbitrary-long time dimension of the ASTIMs into only a single value. Thus, drastically reducing the number of parameters of
the model, and therefore its complexity.

When processing thousands of time-units long STIs series, which indeed occur among the benchmark datasets, this is a quite
coarse operation. Hence, in such cases, GAP might not always represent well-enough local classification-informative aspects of the
underlying STIs data, and in turn deteriorate predictive performance, as well as result in a somewhat slower, more spiky convergence.
Local average pooling, on the other hand, only moderately reduces the input STIs series’ length by aggregating over a small sliding
window of the ASTIMs, aiming to reach a reasonable balance between locality and globality. Hence, in INSTINCT, employing FAP
was preferred over a GAP layer. That is, with great caution to the increased risk of overfitting small datasets, due to the increased
complexity of the model.

To yet reduce our model complexity, and as a consequence its likelihood to overfit, we do not employ any additional fully
connected layer prior to the final softmax layer, whose number of neurons is equal to the number of target classes in the dataset |𝐶|. In
addition, we propose a much more compact network architecture compared to typical networks for computer vision, by stacking only
three inception modules which are also comprised of much fewer filters, as will be explained shortly. Finally, an ensemble of three
classifiers is used, which are identical except for their randomly initialized weight values, to increase the robustness of the proposed
framework. The output probability distribution of INSTINCT is then obtained through averaging the probability distributions of
each of the three individual classifiers. For completeness, categorical cross entropy loss was used as the loss function of each of
the individual classifiers, i.e., 𝐿𝐶𝐸 = −Σ|𝐶|

𝑖=1𝑦𝑖 ⋅ 𝑙𝑜𝑔 𝑦𝑖. That is since the general case with which the proposed framework deals is not
necessarily binary, but rather a multiclass classification problem.

The design of INSTINCT’s inception module is depicted in Fig. 5. Recall that the inception module’s input is an STIs series 𝑆
represented as an ASTIM 𝐴𝑆 (Definition 5), which has a single |𝑆| time-units long time dimension and |Σ| channels, given an

Isr
ael

-U
S BIR

D Fou
nd

ati
on
8

alphabet of symbols Σ. Initially, for the purpose of dimensionality reduction, the input ASTIM flows through a bottleneck layer. The

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 5. INSTINCT’s inception module. First, the dimensionality of the module’s input, which is an STIs series represented as an ASTIM, is reduced through the initial
bottleneck layer, followed by which one-dimensional convolutional filters of multiple lengths are applied in parallel. The individual convolution outputs, as well as
the output of a max pooling layer combined with an additional convolution of length 1, are then concatenated and fed into a batch normalization layer and a ReLU
activation, through which the module’s output is obtained.

bottleneck layer reduces the channels dimensionality of the ASTIM by applying 𝑏 << |Σ| one time-unit long filters, with a stride of 1.
Thus, preserving the original length of the STIs series while significantly reducing the model complexity, which is expected to assist
in preventing the model from overfitting.

Following the said bottleneck layer, one-dimensional filters of multiple lengths are simultaneously applied to the ASTIM, as shown
on the right-hand side of Fig. 5. This is the core property of the inception module and the key for its high flexibility, which enables
the automatic extraction of valuable features and patterns of variable lengths from the STIs series. INSTINCT’s inception module uses
three sets of parallel convolutional filters which are 20, 30, and 40 time-units long, including exactly 8 filters each. In addition, as
shown on the left-hand side of Fig. 5, a parallel max pooling layer is employed as well, whose output is directly fed into another
one-dimensional convolutional layer with filters of length 1. That is, to enforce a uniform output dimensionality amongst all the
parallel convolutions that are then concatenated. This results in an overall number of 8 ⋅ (3 +1) = 32 convolutional filters per module,
taking into account the additional 8 filters which follow the max pooling layer. At last, to potentially accelerate convergence, a batch
normalization layer is employed, through which the concatenated convolution outputs flow. Then, a ReLU activation is applied, after
which the unified output is fed as input into the next layer of INSTINCT’s network.

Assume:

𝐴𝑆 ∈ℝ|Σ|×|𝑆| – an input ASTIM
𝑓𝑏 ∈ℝ𝑏×1 – one-dimensional filters applied in bottleneck layer
𝑙1 = 1, 𝑙2 = 20, 𝑙3 = 30, 𝑙4 = 40 – lengths of applied parallel convolutional filters
𝑓1≤𝑖≤4 ∈ℝ8×𝑙𝑖 – one-dimensional filters applied in each parallel convolution
𝑀𝑃3 – max pooling operation with a window size of three time-units
𝐵𝑁 – batch normalization operation
𝑅𝑒𝐿𝑈 – ReLU activation function, i.e., 𝑅𝑒𝐿𝑈 (𝑥) =𝑚𝑎𝑥(𝑥, 0)

Overall, INSTINCT’s inception module for STIC can be formulated as a function 𝜙 ∶ ℝ|Σ|×|𝑆| → ℝ32×|𝑆|, such that 𝜙(𝐴𝑆) =
𝑅𝑒𝐿𝑈 (𝐵𝑁(𝑀𝑃3(𝐴𝑆) ∗ 𝑓1 ⊕ (𝐴𝑆 ∗ 𝑓𝑏) ∗ 𝑓2 ⊕ (𝐴𝑆 ∗ 𝑓𝑏) ∗ 𝑓3 ⊕ (𝐴𝑆 ∗ 𝑓𝑏) ∗ 𝑓4)), as illustrated in Fig. 5.

One final note is that the original length of the input ASTIM remains unchanged throughout the network. When processing
datasets with thousands of time-units long STIs series, this property might result in both 1) substantially longer training times, due
to sliding the convolutional filters continuously along the whole time dimension; and 2) an increased risk of overfitting, due to a
large number of parameters in the final softmax layer, after flattening the ASTIM. Therefore, in such datasets which are also usually
rather sparse, we recommend using a stride larger than 1 within each residual block, with a length equals to half the shortest filter of
INSTINCT – i.e., 𝑚𝑖𝑛{20,30,40}2 = 10. Thus, reducing the total number of performed convolutions in the 𝑖th residual block of INSTINCT
by a factor of 10𝑖. In addition, the overall length of the ASTIM, and consequently the number of parameters in the final softmax layer,
are also reduced by roughly a factor of 102 = 100, having two residual blocks in INSTINCT’s network. As described in the previous
subsection, in a future work we also propose an alternative approach for processing sparse STIs series datasets, using a sparse ASTIM
representation.

The design of INSTINCT’s network architecture in terms of both the hyperparameter values (e.g., network depth, ensemble size
etc.) and the network layers, and in particular the proposed use of FAP over GAP; has been driven by a comprehensive architecture
study which will be presented in experiment 3. The values of the model hyperparameters have been opted on the benchmark datasets,

Isr
ael

-U
S BIR

D Fou
nd

ati
on
9

aiming to reach the sweet spot with the most accurate classification results at the lowest model complexity, or training time. The

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Table 1

Summary of the main properties of STIC real-world benchmark
datasets. Extreme properties appear in bold.

Dataset 𝑛 𝑁 𝑚 𝑙 |Σ| |𝐶|
Auslan2 200 2447 12.24 29 12 10

Blocks 210 1207 5.75 122 8 8

Context 240 19355 80.65 283 54 5
Hepatitis 498 53921 108.28 7554 63 2
Pioneer 160 8949 55.93 79 92 3
Skating 530 23202 43.78 6828 41 6

selection of FAP over GAP has been empirically substantiated by comparing the two architectures, having the former reporting not
only somewhat improved classification performance, but also a typically faster, more stable convergence. A sensitivity analysis of
the proposed framework has been conducted as well, increasing the confidence that it does not tend to overfit.

4. Evaluation

4.1. Data

4.1.1. Real-world data

To evaluate the proposed INSTINCT framework, we used the publicly available single-label STIC benchmark datasets [25,30],
which include six real-world datasets from various application domains. These datasets, to the best of our knowledge, are all the
acknowledged single-label real-world STIC datasets available online, which have been commonly used as well for the evaluation
of previous methods [2,4,17,20,31]. Multi-labeled datasets are outside of the scope of this study. Table 1 summarizes the main
properties of benchmark datasets considering the following six parameters: (1) number of STIs series in the dataset 𝑛 (i.e., data
samples), (2) total number of STIs 𝑁 , (3) mean STIs series’ size 𝑚 (i.e., number of STIs within a series), (4) maximal STIs series’
length 𝑙 (i.e., total time span or duration of a series), (5) distinct number of symbol types |Σ| (i.e., symbols alphabet size), and (6)
the number of class labels |𝐶|. The extreme properties of each dataset appear in bold in Table 1. A more detailed description of them
is provided in Appendix A.

4.1.2. Synthetic data

As observed in Table 1, the benchmark datasets are relatively small in terms of the number of input data samples that they include
𝑛, and they also differ from each other in multiple aspects. Thus, to enable a large-scale analysis of INSTINCT’s scalability, in which
the effect of each of the input datasets’ properties on performance can be isolated, we introduce the following scheme for synthetic
STIC datasets generation.

Let a predetermined configuration of a number of STIs series 𝑛, a uniform STIs series’ size 𝑚 and length 𝑙, and an alphabet of
symbols Σ. First, 𝑛 empty STIs series {𝑆1, … , 𝑆𝑛} of length 𝑙 are initialized. Then, for each series 𝑆𝑖 it is populated with 𝑚 STIs whose
symbol types are drawn uniformly at random from Σ, and their start and finish timestamps are selected uniformly at random from
[0, 𝑙], such that the start time always precedes the finish time. Class labels are drawn uniformly at random as well from {0, 1}, forming
a completely random binary STIC dataset, which matches the desired configuration of parameter values.

Due to the randomness of class labels, these datasets are of course irrelevant for predictive performance evaluation. However,
they are highly useful for a scalability analysis in which the effect of each parameter on the runtime of INSTINCT can be isolated.
That is, through running INSTINCT on multiple such datasets in which the value of an examined property is gradually increased,
while the values of the rest of the properties are fixed. The experimental setup of the scalability analysis, as well as of the rest of
conducted experiments, will be described in detail in the next subsection. For the complete reproducibility of the generated datasets,
they are included in our online code and data repository, and the input configurations used for their generation are specified in the
experimental setup as well.

4.2. Experimental setup

The experimental setup designed for the evaluation of INSTINCT is threefold. First, INSTINCT’s classification performance was
compared to state-of-the-art methods for STIC [2,4,17,20,31], as well as to three deep learning-based baselines, on the benchmark
datasets. Second, using the described synthetic datasets a scalability analysis has been conducted, in which the potential of the
proposed framework to scale to much larger datasets, which is one of the main pitfalls of the majority of state-of-the-art methods,
has been evaluated. At last, an extensive architecture study of INSTINCT’s network was conducted, aiming to substantiate the design
of the proposed network architecture considering predictive performance, convergence, and sensitivity aspects.

All the experiments were run on an HP Omen having 16 GB main memory running Microsoft Windows 10, with a GTX 1660 Ti
GPU. Since INSTINCT is the only deep learning-based method for STIC, when testing the complexity of the proposed framework, GPU
capabilities have not been utilized and the ensemble classifiers have been run serially. In addition, models were trained using the
Adam optimization algorithm [15] for at most 200 epochs, having their weights initialized randomly. Finally, all the comparisons

Isr
ael

-U
S BIR

D Fou
nd

ati
on
10

were performed using 10-fold cross-validation. As suggested in [14], the Friedman test [8] had been carried to reject the null

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Table 2

Network hyperparameter values’ search space.

Hyperparameter Search space

ensemble size 1–30
residual connections with/without residual connections
bottleneck layer size 2–32, infinite (i.e., no bottleneck layer)
network depth 1–6
filter length 8–64
number of filters 4–32

hypothesis, followed by a pairwise post-hoc analysis in which the average-rank comparison was replaced by a Wilcoxon signed-rank
test with 𝛼 = 5% for the comparisons with state-of-the-art methods, and 𝛼 = 10% for the architecture study. For visualization, critical
difference (CD) diagrams have been used [7], in which non-significantly different methods are connected by a thick horizontal line.

To contribute to future research in the field of STIs series data processing, and allow easy and complete reproducibility of our
experimental results, all the following were made publicly available on our online code and data repository:

• Source code of INSTINCT
• Code for all the experiments
• The experimental results in CSV files
• Real-world and synthetic datasets
• Synthetic datasets generator

4.2.1. Experiment 1: Classification performance

INSTINCT’s classification performance was compared to seven state-of-the-art methods on the STIC benchmark datasets (Table 1).
The compared methods include SPAM [2] as a representative of sequential patterns-based methods, 1-nearest neighbor using the
IBSM distance metric [17], and the feature-based classifiers: STIFE [4], Z-Embedding [20] and SMILE [31], as well as its two sub-
methods MEDOID and STATIC. In addition, to particularly evaluate the predictive power of INSTINCT’s network architecture beyond
just the use of deep learning, it was also compared to three deep learning-based baselines applied directly to INSTINCT’s ASTIMs
representation. The evaluated baselines include 1) a feed-forward network, 2) an LSTM network, and 3) a conventional CNN with a
uniform filter size of 30, which is the average length of filters applied in INSTINCT’s inception module. Since few of the benchmark
datasets are imbalanced, evaluation metrics in this experiment have also included the AUC metric, beyond just the methods’ accuracy
scores.

4.2.2. Experiment 2: Scalability analysis

The goal in this experiment was to empirically evaluate INSTINCT’s potential of scaling to much larger datasets. Specifically, we
analyzed how each of the main four properties of STIC datasets, i.e., the number of STIs series (i.e., training samples), their size and
length, and the number of symbol types (i.e., symbols alphabet size); affects the computation time of each of the two main phases
of INSTINCT – Transform and Classify. For each examined property, INSTINCT was run on multiple synthetic datasets in which the
value of the said property was gradually increased, while the values of the rest of the properties were fixed. Computation times were
averaged over 5 repeated runs. The input configurations used for the generation of synthetic datasets are specified in Appendix C.

Based on the analytical complexity analysis of the Transform phase provided in Subsection 3.1, a time complexity which is linear
in both the number of STIs series and the series’ size was hypothesized, while the STIs series’ length and the number of symbol
types were expected to have no influence on this phase’s runtime. On the other hand, the runtime of the Classify phase, i.e., the
network training time, was expected to depend only on the STIs series’ length and the number of symbol types, which define the
dimensionality of the transformed ASTIMs (Definition 5), as well as on the total number of input data samples.

4.2.3. Experiment 3: Architecture study

In this experiment, a comprehensive architecture study of INSTINCT’s network had been conducted, by which the design of the
proposed network architecture was guided. The architecture study is threefold.

Hyperparameters study. Investigation of the main hyperparameters of INSTINCT’s ensemble of deep CNN models as well as of the
inception module, among which are: the ensemble size, usage of residual connections, bottleneck layer size, network depth, filter
lengths, and the number of filters. In this experiment, the values of the described hyperparameters were opted on the benchmark
datasets, focusing on the trade-off between improved classification accuracy and reduced model complexity and training times. Note
that to avoid the problem of overfitting, the latter must have been treated with great caution. That is mainly due to the relatively
small size of benchmark datasets in terms of the number of STIs series (i.e., training samples) that they include, which practically
limits the explorable complexity of the models aiming to mitigate the risk of overfitting. In accordance, the hyperparameter values’
search space explored in this experiment is outlined in Table 2.

FAP vs GAP. In this experiment, the proposed usage of flattening and average pooling (FAP) over global average pooling (GAP)
in INSTINCT, for the conversion of the inception module’s output into a feature vector, was investigated. For that, INSTINCT was

Isr
ael

-U
S BIR

D Fou
nd

ati
on
11

run once using FAP as presented in the paper (Fig. 4), and then using a GAP layer instead, on the benchmark datasets. First, the

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Table 3

Accuracy scores comparison on benchmark datasets. In each dataset, best performing methods appear in bold, while second best scores are underlined.

Dataset Accuracy

SPAM STATIC MEDOID IBSM STIFE SMILE Z-Embedding 𝑏𝑎𝑠𝑒𝐹𝐹 𝑏𝑎𝑠𝑒𝐿𝑆𝑇𝑀 𝑏𝑎𝑠𝑒𝐶𝑁𝑁 INSTINCT

Auslan2 0.32 0.305 0.46 0.4 0.505 0.485 0.325 0.47 0.57 0.53 0.63

Blocks 0.138 0.933 1.0 1.0 1.0 1.0 1.0 0.976 0.992 0.984 1.0

Context 0.888 0.954 0.961 0.967 0.992 0.988 0.958 0.925 0.983 0.892 1.0

Hepatitis 0.697 0.663 0.697 0.631 0.799 0.813 0.827 0.715 0.795 0.737 0.91

Pioneer 0.773 0.822 0.9 0.956 0.977 0.981 0.981 0.778 0.993 0.847 0.994

Skating 0.813 0.674 0.919 0.983 0.966 0.977 0.91 0.945 0.911 0.866 0.992

Mean 0.605 0.725 0.823 0.823 0.873 0.874 0.834 0.802 0.874 0.809 0.921

Table 4

AUC scores comparison on benchmark datasets. In each dataset, best performing methods appear in bold, while second best scores are underlined.

Dataset AUC

SPAM STATIC MEDOID IBSM STIFE SMILE Z-Embedding 𝑏𝑎𝑠𝑒𝐹𝐹 𝑏𝑎𝑠𝑒𝐿𝑆𝑇𝑀 𝑏𝑎𝑠𝑒𝐶𝑁𝑁 INSTINCT

Auslan2 0.769 0.585 0.748 0.674 0.631 0.686 0.763 0.831 0.833 0.857 0.88

Blocks 0.51 0.899 1.0 1.0 1.0 1.0 1.0 0.998 0.998 0.999 1.0

Context 0.968 0.994 0.9 0.98 1.0 1.0 0.998 0.973 0.996 0.95 1.0

Hepatitis 0.757 0.695 0.836 0.641 0.854 0.863 0.812 0.693 0.777 0.71 0.901

Pioneer 0.734 0.892 0.964 0.97 0.995 0.997 0.997 0.814 0.999 0.835 1.0

Skating 0.955 0.914 0.977 0.989 0.997 0.999 0.984 0.972 0.981 0.928 0.999

Mean 0.782 0.83 0.904 0.876 0.913 0.924 0.926 0.88 0.931 0.88 0.963

classification performance of the two variations of INSTINCT were compared, in terms of the accuracy and AUC scores. Then,
we also analyzed the convergence of INSTINCT either when using FAP or GAP. Recall our hypothesis in Section 3 regarding the
potentially slower, more spiky convergence expected when using GAP for STIC problems. That is due to the rough compression
of the whole arbitrary-long time dimension into only a single, global value. To investigate this hypothesis, we first compared the
convergence rates of the two variations of INSTINCT in terms of the number of epochs till convergence. In addition, in an attempt to
estimate their convergence spikiness, the mean and standard deviation of the absolute value of the delta in test loss recorded in each

epoch were computed. Assuming a total number of training epochs 𝐸, estimations are as follows 𝜇𝑠𝑝𝑖𝑘𝑒 =
Σ𝐸
𝑖=2|𝑙𝑜𝑠𝑠𝑖 − 𝑙𝑜𝑠𝑠𝑖−1|

𝐸 − 1
and

𝜎𝑠𝑝𝑖𝑘𝑒 =

√
Σ𝐸
𝑖=2|(𝑙𝑜𝑠𝑠𝑖 − 𝑙𝑜𝑠𝑠𝑖−1|− 𝜇𝑠𝑝𝑖𝑘𝑒)2

𝐸 − 1
, where larger values of 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 may indicate a potentially more spiky, inconsistent

convergence.

Sensitivity analysis. Since the benchmark datasets are relatively small in terms of the number of data samples, there is a risk of
overfitting them, especially when training a quite complex, optimized deep learning architecture. To mitigate the risk of overfitting
in INSTINCT, several design decisions have been taken, including the use of an ensemble of classifiers as well as multiple steps of
complexity reduction applied to the individual classifiers, as described in detail in Section 3. In addition, as previously noted, the
hyperparameter values’ optimization process as well as all the comparisons reported in the paper were conducted using 10-fold cross
validation.

In this experiment, to yet increase the confidence that the proposed INSTINCT framework does not tend to overfit, we have also
wanted to give a notion of how sensitive the model is to changes in its optimized hyperparameter values, inspired by [14]. For that
purpose, we wanted to compare the classifications results of the 𝑘-best configurations of hyperparameter values of INSTINCT from
the explored search space outlined in Table 2, for some 1 < 𝑘 ∈ ℕ. Specifically, 𝑘 = 5 was selected, which means that the accuracy
and AUC scores of INSTINCT when used with each of its 5-best performing configurations of hyperparameter values, were compared
to each other as well as to state-of-the-art methods on the benchmark datasets.

5. Results

5.1. Experiment 1: Classification performance

Tables 3–4 summarize the accuracy and AUC scores of INSTINCT compared to state-of-the-art-methods for STIC [2,4,17,20,31] on
the benchmark datasets, as well as on average. In addition, classification results of the three deep learning-based baselines employed
on INSTINCT’s ASTIMs representation are shown, where 𝑏𝑎𝑠𝑒𝐹𝐹 , 𝑏𝑎𝑠𝑒𝐿𝑆𝑇𝑀 , and 𝑏𝑎𝑠𝑒𝐶𝑁𝑁 stand for the feed-forward, LSTM, and
CNN baselines described in the experimental setup respectively. Note that in Tables 3–4 best-performing methods in each dataset
appear in bold, while second best scores are underlined.

Looking at Tables 3–4, it is clear that for the vast majority of datasets, and consequently on average, INSTINCT improves the
classification performance over state-of-the-art, as well as over the employed baselines, in terms of both the accuracy and AUC

Isr
ael

-U
S BIR

D Fou
nd

ati
on
12

scores. However, while INSTINCT indeed reached the most accurate classification results among the compared methods in all of

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 6. Critical difference diagrams of the accuracy (a) and AUC (b) scores of INSTINCT compared to state-of-the-art methods, as well as to the three evaluated deep
learning-based baselines, on the benchmark datasets.

Fig. 7. Runtime of INSTINCT’s Transform phase as a function of the number of STIs series (a), the series’ size (b) and length (c), and the number of symbol types (d).

the individual datasets, it has not always been the only best-performing method. An example is the Blocks dataset, in which several
existing methods [4,17,20,31] reached an equal accuracy score of 1.0 (which is, of course, the maximal possible accuracy). That is
mainly due to the high predictive power of the pairwise temporal relations that appear in the Blocks dataset, which are explicitly
encoded as features in the majority of previous methods and have usually been enough for perfect classification. That is, of course,
not at all the case in the rest of the datasets, where more significant differences in accuracy have been reported.

As explained in detail in Section 4, to further test for statistical significance the Friedman test [8] was carried, followed by a
pairwise post-hoc analysis using the Wilcoxon signed-rank test with 𝛼 = 5%. The results are summarized in the critical difference
diagrams shown in Fig. 6, in which (a) demonstrates the superior accuracy of INSTINCT compared to both state-of-the-art methods
and the employed baselines on a highly significant level. In addition, note that the employed baselines reached reasonable accuracy
scores, having the LSTM baseline almost as good as the best-performing state-of-the-art methods, and the CNN baseline just on-par
as well in terms of statistical significance. These findings demonstrate the predictive power of INSTINCT’s inception-based network
beyond just the use of deep learning, as well as the potential in applying advanced deep-learning concepts from a wide range of
fields (e.g., computer vision, natural language processing) to the proposed representation of STIs series as ASTIMs.

Finally, in terms of the AUC score, a statistically significant improvement was shown in INSTINCT over STATIC, SPAM, IBSM,
MEDOID, Z-Embedding, and each of three deep learning-based baselines; while a non-significant improvement was reported com-
pared to STIFE and SMILE, as shown in Fig. 6 (b). Nevertheless, it should be noted that the size of the sample which has been used
for significance testing is quite small, since there are only few STIC benchmark datasets (Table 1). That is unlike related problems
such as time series classification, where few tens of benchmark datasets are available online.

5.2. Experiment 2: Scalability analysis

After demonstrating that the proposed INSTINCT framework improves classification performance over state-of-the-art, in this
experiment we present an empirical evaluation of INSTINCT’s potential of scaling to large datasets. For that, we analyzed how the
computation time of each of the two main phases of INSTINCT – i.e., Transform and Classify, is affected by the main four properties
of STIC datasets, including 1) the number of STIs series (i.e., training samples), 2) the series’ size and 3) length, and 4) the number
of symbol types. That is based on the synthetically generated STIC datasets described in detail in Section 4.

Fig. 7 summarizes the results obtained for the Transform phase, through which the input STIs series are represented as ASTIMs
in INSTINCT prior to being classified. In this figure (a–b), it is observed that runtime grows linearly with the number of STIs series
(i.e., number of training samples) and the STIs series’ size (i.e., number of STIs that they include). Meanwhile, the length of the STIs
series and the number of symbol types seem to have no impact on this phase’s runtime (c–d). That is since in the Transform phase,
the raw series’ STIs are embedded within their ASTIMs one STI at a time, regardless of their symbol types and time durations. This
conforms with our hypothesis based on the analytical complexity analysis of the Transform phase provided in Subsection 3.1.

The results obtained for the Classify phase, through which the transformed ASTIMs are classified via INSTINCT’s ensemble of
deep CNN models, are presented in Fig. 8. In this figure a linear relationship is demonstrated between the network training time and
the number of STIs series (a), their length (c), and the number of symbol types (d); which define the number of ASTIMs on which the
network is trained as well as their dimensionality. Since the series’ STIs had already been embedded within their ASTIMs during the
preliminary Transform phase, varying the size of the STIs series, however, did not affect the network training time, as shown in Fig. 8

Isr
ael

-U
S BIR

D Fou
nd

ati
on
13

(b). In addition, recall our recommendation of using a stride of 10 time-units which equals to half the shortest filter of INSTINCT’s

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 8. Runtime of INSTINCT’s Classify phase – i.e., the network training time, as a function of the number of STIs series (a), their size (b) and length (c), and the
number of symbol types (d); for 200 epochs of training.

Fig. 9. Critical difference diagram of the accuracy score of INSTINCT for several ensemble sizes comprised of 1–30 classifiers.

Fig. 10. Critical difference diagram of the accuracy score of INSTINCT with and without the use of residual connections, compared to state-of-the-art methods.

network, to reduce the model complexity and training time for datasets with thousands of time-units long STIs series (Subsection
3.2). In Fig. 8, we also show the network training time when using the proposed stride, reporting an expected, consistent reduction
in runtime by a factor of 7–10 compared to the default stride of 1. This reduction is mainly due to the reduced number of performed
convolutions in each residual block 𝑖 ∈ {1, 2} by a factor of 10𝑖, as described in Subsection 3.2.

Summing-up the results of the Transform and Classify phases, an overall empirical time complexity which is linear in each of the
main properties of STIC datasets is observed for INSTINCT. These findings are encouraging as the current best-performing methods,
i.e., STIFE and SMILE, have reported at least quadratic time complexities in both the number of STIs series, their size, and the number
of symbol types (Subsection 2.2). In fact, INSTINCT’s potential of scaling to large datasets is even more promising considering the
trivial GPU parallelization of the network training, which has not been utilized on purpose in this experiment. In Appendix E, we
also provide the empirical computational time of INSTINCT when being run on each of the real-world benchmark datasets (Table 1),
beyond the extensive analysis conducted in this subsection on synthetic data.

5.3. Experiment 3: Architecture study

5.3.1. Hyperparameters study

The hyperparameter values of INSTINCT’s ensemble of deep CNN models have been opted on the benchmark datasets, focusing
on the trade-off between improved classification performance and reduced model complexity and training times. In Fig. 9–14 critical
difference diagrams are presented, where each diagram compares multiple variations of INSTINCT with varied values of a specific
hyperparameter. In these diagrams, running INSTINCT with the value of the hyperparameter tested set to 𝑣 would be denoted by
INSTINCT-𝑣. If no such 𝑣 is specified, then INSTINCT’s final architecture, as introduced in Section 3, is referred.

Ensemble size. Random initialization of weight values of a neural network might result in a non-negligible variance in the clas-
sification results between successive runs. Hence, as described in Section 3, to increase the robustness of the proposed INSTINCT
framework, an ensemble of multiple classifiers has been used, which are identical except for their randomly initialized weight values.
Fig. 9 presents a critical difference diagram of the accuracy score of INSTINCT for several ensemble sizes, comprised of 1–30 clas-
sifiers. In this figure, only minor, non-statistically significant improvements are shown for ensembles of more than three classifiers,
for which accuracy scores have been quite stable. Therefore, for the sake of minimizing training times, an ensemble size of three
classifiers was used in INSTINCT, as illustrated in Fig. 3.

Residual connections. To evaluate the impact of the residual connections on the classification accuracy of INSTINCT, the framework
was run once including the residual connections, and then without any such shortcut connection. The results are summarized in the
critical difference diagram presented in Fig. 10, which compares the accuracy scores of these two variations of INSTINCT to state-of-

Isr
ael

-U
S BIR

D Fou
nd

ati
on
14

the-art methods on the benchmark datasets.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 11. Critical difference diagram comparing the accuracy score of INSTINCT for several bottleneck sizes 2 ≤ 𝑏 ≤ 32, as well as for 𝑏 = ∞, which stands for the
bottleneck layer being unused.

Fig. 12. Critical difference diagram of the accuracy score of INSTINCT depending on the network depth, i.e., the number of stacked inception modules.

While the two variations of INSTINCT outperformed state-of-the-art on a highly significant level, only a minimal difference
in accuracy was reported between them. This outcome is, in fact, unsurprising since the proposed network architecture is quite
shallow (i.e., comprised of only three stacked inception modules), and thus has lower likelihood to suffer from the problem of
vanishing gradients, which skip connections aim to mitigate. Furthermore, in related problems in which the best-performing network
architectures are typically much deeper, such as time series classification and computer vision, residual connections have mostly
sped-up convergence while showing only minimal impacts on accuracy [14,39].

Bottleneck layer size. Another important feature of the proposed network, and in fact of the inception module, is the bottleneck
layer. The bottleneck layer reduces the channels dimensionality of the input ASTIMs, which equals to the size of the symbols
alphabet |Σ|. That is through applying 𝑏 << |Σ| one time-unit long convolutional filters with a stride of 1, for a bottleneck size 𝑏.
Fig. 11 presents a critical difference diagram showing how the accuracy score of INSTINCT is affected by the bottleneck layer size 𝑏.
That is, for 2 ≤ 𝑏 ≤ 32 as well as for 𝑏 =∞, which stands for the bottleneck layer being unused, in which case the original channels
dimensionality of the ASTIMs is preserved.

In Fig. 11 a clear trend is observed, according to which higher accuracy rankings have been obtained for larger bottleneck sizes.
That is mainly since the smaller the bottleneck 𝑏, the more significant the initial reduction in the dimensionality of the ASTIMs, and
consequently in the model complexity, is. Thus, potentially forming high-biased models when using too small values of 𝑏. For larger
values of 𝑏, on the other hand, accuracy scores have been consistently improving, which indicates that severe overfitting has not
been reached even without the use of the bottleneck layer (i.e., when 𝑏 =∞). Yet, a non-significant difference in accuracy is observed
already for 𝑏 = 32.

Note that in practice, not using the bottleneck layer in this experiment stands for 𝑏 ≈ 64, since for all the benchmark datasets |Σ| ≤ 64 (Table 1). That is except for the Pioneer dataset in which |Σ| = 92, however, accuracy scores have stabilized already for
a very small bottleneck size of 8. Thus, using a bottleneck layer size of 32 typically reduces the channels dimensionality of the
ASTIMs by roughly a factor of 2 while resulting in only a small reduction in accuracy. In that respect, it is also important to highlight
that for datasets with much larger symbols alphabet sizes (e.g., few hundreds of symbol types), which do not present among the
benchmark datasets, some of the explored bottleneck sizes might be too small and further exploration of larger bottleneck sizes may
be of interest.

Network depth. One of the key hyperparameters of deep CNN architectures is the network depth, which enables the extraction of
higher order, hierarchical features from spatial information, that are expected to further improve classification performance. Fig. 12
shows a critical difference diagram of INSTINCT’s accuracy score depending on the network depth for 1–6 layers deep variations
of INSTINCT, in terms of the number of stacked inception modules. Note that the networks explored in this experiment are quite
shallow compared to state-of-the-art deep CNN architectures for computer vision, for example. That is mainly due to the relatively
small size of STIC benchmark datasets, which include only several hundreds of data samples. Thus, strictly limiting the explorable
complexity of the models, aiming to avoid the problem of overfitting.

In Fig. 12, an unsurprising yet significant improvement is observed in accuracy when increasing the network depth by stacking
two or three inception modules, through which longer patterns, possibly at higher abstraction levels, are expected to be detected
within the input ASTIMs. Further increasing the network depth, however, resulted in reduced accuracy scores. While stacking 4–5
modules showed only a slight decrease in accuracy, for a deeper architecture comprised of six stacked inception modules, a significant
reduction was reported. That is potentially due to overfitting few of the benchmark datasets, a trend which is expected to intensify
for even deeper networks. Therefore, as presented in Section 3, the final architecture of INSTINCT is comprised of three stacked
inception modules, that has reached the best classification performance at a reasonable model complexity.

Filter length. Another important hyperparameter of deep CNN architectures in general, and inception-based networks in particular,
is the length of convolutional filters employed in each of the network’s convolutional layers. To analyze how the length of the
applied filters affects the accuracy of INSTINCT, the framework was run multiple times using only a single, uniform length of filters

Isr
ael

-U
S BIR

D Fou
nd

ati
on
15

throughout the network. That is, for filter lengths corresponding to the powers of two from 8 to 64. We highlight that these filters

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 13. Critical difference diagram of the accuracy score of INSTINCT for several individual filter lengths, as well as of the final architecture of INSTINCT which
combines 20, 30, and 40 time-units long filters via the inception module.

Fig. 14. Critical difference diagram of the accuracy score of INSTINCT depending on the number of convolutional filters applied in each of the inception module’s
convolutions.

are quite long compared to convolutional filters that are typically employed in the field of computer vision. That is mainly due to
the one less spatial dimension of ASTIMs compared to images, which allows the exploration of much longer filters that may indeed
be beneficial for the detection of prolonged patterns within arbitrary long STIs series data.

The results of running INSTINCT with each of the specified uniform filter lengths (i.e., 8, 16, 32, and 64), as well as of the
final architecture of INSTINCT which combines multiple filter lengths via the inception module, are summarized in the critical
difference diagram presented in Fig. 13. First, looking at the individual filter lengths only, a significant improvement in accuracy
was observed when increasing the filter length of INSTINCT from 8 to 16, or even to 32 time-units. This significant improvement has
been predictable, since longer filters are known to better detect longer patterns which potentially reside within the input ASTIMs.
Further doubling the filter length, however, showed a reduction in accuracy, yet not significant, for 64 time-units long filters. That
is mainly due to the much increased model complexity, which resulted in a somewhat higher tendency of the model to overfit, and
as a consequence not generalize well enough to unseen data.

These findings have led us to the final design of INSTINCT’s network presented in Section 3, which combines three filter lengths of
20, 30, and 40 time-units, surrounding (∼±10 time-units) the best performing individual filter length of 32. That is via the inception
module, which enables to simultaneously apply filters of varied lengths to the input ASTIMs. As shown in Fig. 13, this architecture
has further improved accuracy over the best performing individual filter length, reporting a statistically significant difference. This
demonstrates the power of applying inception-based convolutional neural networks to STIs series data, where the high flexibility of
the inception module is beneficial for well-classifying data samples of various lengths and densities.

Number of filters. At last, after determining the filter lengths to be used in the inception module, we also wanted to investigate
the effect of the number of filters applied in each convolution operation in INSTINCT on the framework’s accuracy. Note that the
number of filters must be set with great caution to the risk of overfitting. That is since increasing the number of filters by a factor
𝑓 , results in an increased number of trainable parameters in each convolutional layer, as well as in the final softmax layer, by
roughly the same factor. Fig. 14 shows a critical difference diagram of the accuracy score of INSTINCT with a varied number of
filters corresponding to the powers of two from 4 to 32. While increasing the number of filters from 4 to either 8 or 16 filters resulted
in a statistically significant improvement in accuracy, only a minimal difference was reported between them. Running INSTINCT
with a further doubled number of convolutional filters (i.e., 32), however, resulted in less accurate classification results, potentially
due to the higher tendency of the model to overfit. Therefore, 8 filters were selected to be applied in each convolution operation in
INSTINCT. That is mainly due to the significantly reduced complexity of the model, compared to the use of 16 filters. Note that this
stands for an overall number of 8 ⋅ 4 = 32 filters per inception module, due to the four convolutions applied in parallel, as explained
in detail in Subsection 3.2.

5.3.2. FAP vs GAP

In this experiment, we further investigated the proposed usage of flattening and average pooling (FAP) over global average
pooling (GAP) in INSTINCT, for the conversion of the inception module’s output into a feature vector. That is, in terms of both
the classification performance and convergence aspects. First, Fig. 15 presents critical difference diagrams of the accuracy and AUC
scores of INSTINCT either when using FAP or GAP, compared to state-of-the-art methods on the benchmark datasets. While the two
variations of INSTINCT showed improved classification performance over state-of-the-art in terms of either evaluation metric, a high
significance level of improvement in accuracy was reported only when using FAP. Yet, despite the indeed improved classification
performance obtained for FAP compared to the use of GAP, as hypothesized, the differences between the two variations of INSTINCT
were not statistically significant on the given benchmark.

To further analyze the convergence of INSTINCT either when using FAP or GAP, we compared the convergence rates of the
two variations of INSTINCT in terms of the number of epochs till convergence, for at most 200 epochs of training. The results are
summarized in Fig. 16, which compares the distribution of convergence rates of the evaluated variations of INSTINCT for each
dataset, over 10-fold cross-validation. While early convergence has not been reached in either variation along the first 200 epochs of
training in the Auslan2 dataset, looking at Fig. 16 it is quite clear to see that in the rest of datasets convergence has been much faster

Isr
ael

-U
S BIR

D Fou
nd

ati
on
16

when using FAP, by an average factor of 54. That is, while also reporting typically lower variance among the different folds of each

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 15. Critical difference diagrams of the accuracy and AUC scores of INSTINCT either when using flattening and average pooling (FAP) as proposed in the paper,
or a global average pooling layer (GAP); compared to state-of-the-art methods.

Fig. 16. Violin plot comparing the distribution of convergence rates of INSTINCT – either when using FAP or GAP, on the benchmark datasets over 10-fold cross-
validation.

Fig. 17. Violin plots comparing the distribution of convergence spikiness estimation metrics 𝜇𝑠𝑝𝑖𝑘𝑒 (a) and 𝜎𝑠𝑝𝑖𝑘𝑒 (b) of INSTINCT – either when using FAP or GAP, on
the benchmark datasets over 10-fold cross-validation.

dataset. To test for statistical significance, we carried out a t-test as well as a Wilcoxon signed-rank test, resulting in 𝑝-value≈ 1.2𝑒 −7
in the former and 𝑝-value ≈ 5.4𝑒 − 7 in the latter.

Finally, we also attempted to estimate the degree of convergence spikiness of each of the two variations of INSTINCT. That is, in
terms of the convergence spikiness estimation metrics 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 introduced in Subsection 4.2.3, which stand for the mean and
standard deviation of the absolute value of the delta in test loss recorded along the network training epochs respectively. The results
are summarized in Fig. 17, which compares the distribution of 𝜇𝑠𝑝𝑖𝑘𝑒 (a) and 𝜎𝑠𝑝𝑖𝑘𝑒 (b) values obtained for INSTINCT either when
using FAP or GAP, for each dataset over 10-fold cross-validation.

Fig. 17 (a) demonstrates that lower values of 𝜇𝑠𝑝𝑖𝑘𝑒 have been typically reported when using FAP in all of the benchmark datasets,
by an average factor of 5.42, while also showing somewhat reduced variance among folds. In Fig. 17 (b) a similar trend is observed
in the distribution of 𝜎𝑠𝑝𝑖𝑘𝑒 values. That is except for the Blocks datasets, in which the use of GAP resulted in slightly lower values
of 𝜎𝑠𝑝𝑖𝑘𝑒. Yet, overall, a reduction factor of 3.53 has been reported on average in 𝜎𝑠𝑝𝑖𝑘𝑒 when using FAP compared to the use of GAP.
Moreover, in terms of both 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒, the use of FAP resulted in a statistically significant improvement over GAP, reporting
𝑝-value < 1.1𝑒 − 5 and 𝑝-value < 1𝑒 − 9 in a t-test and a Wilcoxon signed-rank test respectively, which compared the two populations.
Thus, strengthening the assumptions made in Subsection 4.2.3 regarding the potentially slower, more spiky convergence of INSTINCT
when using GAP for STIC compared to the use of FAP. In Appendix D, we exemplify how the behavior of INSTINCT’s loss curve along
the training process – either when using FAP or GAP, is reflected in 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒. That is, when processing the Context and
Pioneer datasets, on which the largest and smallest differences in 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 have been reported between the two variations of

Isr
ael

-U
S BIR

D Fou
nd

ati
on
17

INSTINCT respectively, as shown in Fig. 17.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Fig. 18. Critical difference diagrams of the accuracy and AUC scores of INSTINCT when used with each of its 5-best configurations of hyperparameter values,
compared to state-of-the-art methods.

5.3.3. Sensitivity analysis

At last, we wanted to investigate how sensitive INSTINCT is to small changes in its optimized hyperparameter values. For that, the
accuracy and AUC scores of INSTINCT when used with each of its 5-best configurations of hyperparameter values, were compared to
each other as well as to state-of-the-art methods. The results are summarized in the critical difference diagrams presented in Fig. 18,
in which only minor, non-significant differences are observed among all the evaluated configurations of INSTINCT. In addition, in
terms of their statistical significance compared to state-of-the-art, it is quite clear to see that they are all virtually the same. These
findings demonstrate a low sensitivity of INSTINCT to small changes in its optimized hyperparameter values, which, along with the
use of 10-fold cross-validation, increase the confidence that the proposed framework does not tend to overfit.

6. Discussion and conclusions

In this paper we introduced INSTINCT – a novel deep learning-based framework for the classification of series of symbolic
time intervals (STIC). INSTINCT exhibits an almost fully information-preserving transformation of raw STIs series into real matrices
through the concept of ASTIMs. The proposed transformation enables to bridge between the field of STIs data processing and several
other, more intensely researched fields such as computer vision, natural language processing, and time series analysis. Thus, opening
the door for significant future work of bringing the forefront of research within these fields into a large variety of valuable, yet
immaturely researched problems involving STIs data, e.g., STIs series clustering, classification, embedding etc.

In INSTINCT, the transformed ASTIMs are classified via a novel ensemble of three deep inception-based classifiers for STIC. The
evaluation has demonstrated that INSTINCT significantly improves state-of-the-art classification accuracy on the real-world STIC
benchmark datasets. That is, while also reporting high scalability – showing a linear dependency between its overall runtime and
each of the main properties of STIs series datasets. Finally, an extensive architecture study of INSTINCT has been conducted, focusing
on the trade-off between improved classification performance and reduced model complexity and training times, as well as on the
analysis of INSTINCT’s sensitivity and convergence characteristics. For future work, we would like to build upon the proposed
representation of STIs series as ASTIMs to investigate the integration of recent advancements made in the related research fields
of time series analysis (e.g., ROCKET and its variants) and natural language processing (e.g., self-attention), into STIs series data
processing. In addition, we would also like to develop more flexible and efficient representations for very long STIs series that are
usually rather sparse.

CRediT authorship contribution statement

Omer David Harel: Conceptualization, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing
– original draft. Robert Moskovitch: Conceptualization, Funding acquisition, Methodology, Resources, Supervision, Visualization,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code and data are available online on GitHub (link is provided in the paper).

Acknowledgements

This research was partially funded by a grant of the Israeli Ministry of Science and Technology (grant 8760441). Omer David
Harel was also funded by the Darom-Lachish scholarship of Kreitman School of Advanced Graduate Studies at Ben Gurion University

Isr
ael

-U
S BIR

D Fou
nd

ati
on
18

(no. 1955129).

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Appendix A. Real-world data

In this appendix, detailed information is provided on the real-world STIC benchmark datasets [25,30] which have been used for
the evaluation of INSTINCT.

• Auslan2. STIs have been derived from the publicly available Australian Sign Language dataset in the UCI repository, in which
each sample, i.e., STIs series, represents a single word.

• Blocks. STIs represent visual primitives that have been drawn from videos of a human hand stacking colored blocks. Each STIs
series stands for one of eight scenarios, including either atomic actions (e.g., move-right) or complete scenarios (e.g., assemble).

• Context. STIs have been extracted from categorical and numerical data which describe the context of a mobile device carried
by humans in different scenarios. Each STIs series represents one of five such scenarios (e.g., meeting or street).

• Hepatitis. STIs series describe series of tests conducted to patients suffering from either Hepatitis B or C over a time period of
10 years.

• Pioneer. STIs have been derived from the Pioneer-1 dataset in the UCI repository, which includes data collected from the
Pioneer-1 mobile robot’s sensor readings. Each STIs series describes one of the robot’s three moving scenarios, i.e., either gripper,
move, or turn.

• Skating. STIs have been derived from fourteen-dimensional numerical time series, which describe both the muscle activity and
leg position of six professional In-Line Speed Skaters during controlled tests. Each STIs series represents a complete movement
cycle.

Appendix B. Raw STIs series reconstruction from ASTIMs

Under the assumption that multiple STIs which have the same symbol do not overlap, raw STIs series can be fully reconstructed
from their transformed ASTIMs as follows.

Algorithm 1 Raw STIs Series reconstruction from an ASTIM.

Input: Let Σ be an alphabet of symbols, and an ASTIM 𝐴𝑆 ∈ℝ|Σ|×|𝑆| .
Output: 𝑆 – reconstructed raw STIs series
1: 𝑆 ← ∅
2: 𝑠𝑡𝑎𝑟𝑡 ←−1, 𝑓𝑖𝑛𝑖𝑠ℎ ← −1
3: for 𝜎 ∈ Σ do

4: for 𝑡 ← 0 to |𝑆| do

5: if 𝐴𝑆
𝜎,𝑡
> 0 ∧ (𝑡 = 0 ∨𝐴𝑆

𝜎,𝑡−1 = 0) then

6: 𝑠𝑡𝑎𝑟𝑡 ← 𝑡

7: else if 𝐴𝑆
𝜎,𝑡

= 0 ∧ 𝑡 > 0 ∧𝐴𝑆
𝜎,𝑡−1 > 0 then

8: 𝑓𝑖𝑛𝑖𝑠ℎ ← 𝑡

9: 𝐼 ← (𝜎, 𝑠𝑡𝑎𝑟𝑡, 𝑓𝑖𝑛𝑖𝑠ℎ)
10: 𝑆 ← 𝑆 ∪ {𝐼}
11: 𝑠𝑡𝑎𝑟𝑡 ←−1, 𝑓𝑖𝑛𝑖𝑠ℎ ← −1
12: end if

13: end for

14: end for

15: return 𝑆

Appendix C. Configurations of synthetic datasets for scalability analysis

See Table C.5 below.

Appendix D. FAP vs GAP – Illustration of convergence spikiness estimation metrics

In this appendix, we aim to give a notion of how the convergence spikiness estimation metrics 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 introduced in
Subsection 4.2.3, are reflected in INSTINCT’s loss curve either when using FAP or GAP. For that, we use the Context and Pioneer
datasets, on which the largest and smallest differences in 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 have been recorded between the two evaluated variations
of INSTINCT respectively (Fig. 17).

Fig. D.19 depicts the loss curve of INSTINCT along 200 epochs of training, while Table D.6 lists the respective values of 𝜇𝑠𝑝𝑖𝑘𝑒 and
𝜎𝑠𝑝𝑖𝑘𝑒 obtained in the Context and Pioneer datasets, either when using FAP or GAP. In the Context dataset, using FAP in INSTINCT
resulted in an eight times smaller value of 𝜇𝑠𝑝𝑖𝑘𝑒, and about four times smaller value of 𝜎𝑠𝑝𝑖𝑘𝑒 compared to the use of GAP. This is
indeed reflected in Fig. D.19 (a), which shows the much smoother loss curve of INSTINCT when using FAP compared to the rather
spiky curve obtained when using GAP. In the Pioneer dataset, on the other hand, both variations of INSTINCT resulted in much
smaller values of 𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒, having FAP reporting only 1.5–2 times lower measurements compared to the use of GAP. That is
due to the more consistent convergence of both variations of INSTINCT observed in Fig. D.19 (b), in which only several moderate

Isr
ael

-U
S BIR

D Fou
nd

ati
on
19

spikes in loss have occurred when using GAP.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Table C.5

Input configurations for the generation of synthetic data used for
INSTINCT’s scalability analysis, where 𝑛 stands for the number of
STIs series, 𝑚 and 𝑙 represent the series size and length respec-
tively, and |Σ| stands for the symbols alphabet size.

examined property 𝑛 𝑚 𝑙 |Σ|

𝑛

10

256 1024 128

50

100

200

300

400

500

600

800

1000

2500

5000

7500

10000

𝑚 1024

10

1024 128

50

100

150

200

250

𝑙 1024 256

32

128

64

128

256

512

1024

|Σ| 1024 256 1024

8

16

32

64

128

Isr
ael

-U
S BIR

D Fou
nd

ati
on
20

Fig. D.19. Illustrations of INSTINCT’s loss curve either when using FAP or GAP on the Context and Pioneer datasets.

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

Table D.6

𝜇𝑠𝑝𝑖𝑘𝑒 and 𝜎𝑠𝑝𝑖𝑘𝑒 values obtained for INSTINCT in
the Context and Pioneer datasets, either when using
FAP or GAP.

Dataset 𝜇𝑠𝑝𝑖𝑘𝑒 𝜎𝑠𝑝𝑖𝑘𝑒

FAP GAP FAP GAP

Context 0.022 0.177 0.100 0.469
Pioneer 0.002 0.004 0.013 0.022

Table E.7

INSTINCT’s Transform time, network epoch time – either when running on CPU or
GPU, and the mean number of epochs till convergence, in each of the real-world STIC
datasets.

Dataset Transform time (s) Network epoch time (s) Mean #epochs
till convergence

CPU GPU

Auslan2 0.156 0.025 0.018 200
Blocks 0.087 0.067 0.020 1
Context 1.117 1.193 0.022 9
Hepatitis 3.561 5.379 1.063 185.3
Pioneer 0.547 0.061 0.023 34
Skating 1.495 5.328 1.046 7

Appendix E. INSTINCT’s runtime on real-world datasets

Table E.7 summarizes INSTINCT’s Transform time and network epoch time, either when running on CPU or a GTX 1660 Ti GPU,
as well as the mean number of epochs till convergence, in each of the real-world STIC datasets (Table 1). As described in Subsection
4.2, INSTINCT’s network has been trained for at most 200 epochs. Thus, the total time of the Classify phase, i.e., the network training
time, is bounded by two hundred times the epoch time, although in the majority of datasets convergence has been typically reached
much faster, as shown in Table E.7 as well as in Fig. 16.

References

[1] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26 (1983) 832–843, https://doi .org /10 .1145 /182 .358434.
[2] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential pattern mining using a bitmap representation, in: Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2002, pp. 429–435.
[3] I. Batal, H. Valizadegan, G.F. Cooper, M. Hauskrecht, A temporal pattern mining approach for classifying electronic health record data, ACM Trans. Intell. Syst.

Technol. 4 (2013) 1–22.
[4] L. Bornemann, J. Lecerf, P. Papapetrou, Stife: a framework for feature-based classification of sequences of temporal intervals, in: International Conference on

Discovery Science, Springer, 2016, pp. 85–100.
[5] A. Dempster, F. Petitjean, G.I. Webb, Rocket: exceptionally fast and accurate time series classification using random convolutional kernels, Data Min. Knowl.

Discov. 34 (2020) 1454–1495, https://doi .org /10 .1007 /s10618 -020 -00701 -z.
[6] A. Dempster, D.F. Schmidt, G.I. Webb, Minirocket: a very fast (almost) deterministic transform for time series classification, in: Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 248–257.
[7] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (2006) 1–30.
[8] M. Friedman, A comparison of alternative tests of significance for the problem of m rankings, Ann. Math. Stat. 11 (1940) 86–92, https://doi .org /10 .1214 /aoms /

1177731944.
[9] O. Harel, R. Moskovitch, Complete closed time intervals-related patterns mining, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2021,

pp. 4098–4105.
[10] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 770–778.
[11] J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Classification of time series by shapelet transformation, Data Min. Knowl. Discov. 28 (2014) 851–881,

https://doi .org /10 .1007 /s10618 -013 -0322 -1.
[12] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in: International Conference on Machine

Learning, PMLR, 2015, pp. 448–456.
[13] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.A. Muller, Deep learning for time series classification: a review, Data Min. Knowl. Discov. 33 (2019)

917–963, https://doi .org /10 .1007 /s10618 -019 -00619 -1.
[14] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D.F. Schmidt, J. Weber, G.I. Webb, L. Idoumghar, P.A. Muller, F. Petitjean, Inceptiontime: finding alexnet

for time series classification, Data Min. Knowl. Discov. 34 (2020) 1936–1962, https://doi .org /10 .1007 /s10618 -020 -00710 -y.
[15] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv :1412 .6980, 2014.
[16] O. Kostakis, P. Papapetrou, J. Hollmén, Artemis: assessing the similarity of event-interval sequences, in: Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, Springer, 2011, pp. 229–244.
[17] A. Kotsifakos, P. Papapetrou, V. Athitsos, Ibsm: interval-based sequence matching, in: Proceedings of the 2013 SIAM International Conference on Data Mining,

SIAM, 2013, pp. 596–604.
[18] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (2017) 84–90.
[19] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998) 2278–2324.
[20] Z. Lee, Š. Girdzijauskas, P. Papapetrou, Z-embedding: a spectral representation of event intervals for efficient clustering and classification, in: Joint European

Isr
ael

-U
S BIR

D Fou
nd

ati
on
21

Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2020, pp. 710–726.

https://doi.org/10.1145/182.358434
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib70083EF6C4B49BF6731E6EA6765DA90Bs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib70083EF6C4B49BF6731E6EA6765DA90Bs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib2B600DAD958426E832730F00FFA800EDs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib2B600DAD958426E832730F00FFA800EDs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibC8950A6334B4EC4AE7835C072CFCA25Es1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibC8950A6334B4EC4AE7835C072CFCA25Es1
https://doi.org/10.1007/s10618-020-00701-z
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib6C51DE22A1655DCF33C44007DDA5A17Ds1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib6C51DE22A1655DCF33C44007DDA5A17Ds1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib058B1FA057EA1118F48FCB865BB848ADs1
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1214/aoms/1177731944
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib053D1C7B2341B657017D306DB0C168A9s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib053D1C7B2341B657017D306DB0C168A9s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib1159C580214BA145EFEFCE903CCC1A58s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib1159C580214BA145EFEFCE903CCC1A58s1
https://doi.org/10.1007/s10618-013-0322-1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib27BD822024C5F6D2B86381BF4D8F1DACs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib27BD822024C5F6D2B86381BF4D8F1DACs1
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-020-00710-y
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibBE6886BDE297DFE384FF43A58A06B18Es1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibBE6886BDE297DFE384FF43A58A06B18Es1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD8D42F78FFEFC1A8EDB793F82A2F7423s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD8D42F78FFEFC1A8EDB793F82A2F7423s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib6E2E173BE3766503F3DC73D226E5BFCCs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib7B42ED56A34BFDA82DAF0C91BCFA6FA7s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibE76F837926A5207592AE93FCE20C1A5Bs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibE76F837926A5207592AE93FCE20C1A5Bs1

Information Sciences 642 (2023) 119147O.D. Harel and R. Moskovitch

[21] J. Lines, S. Taylor, A. Bagnall, Hive-cote: the hierarchical vote collective of transformation-based ensembles for time series classification, in: 2016 IEEE 16th
International Conference on Data Mining (ICDM), IEEE, 2016, pp. 1041–1046.

[22] L. Liu, S. Wang, B. Hu, Q. Qiong, J. Wen, D.S. Rosenblum, Learning structures of interval-based bayesian networks in probabilistic generative model for human
complex activity recognition, Pattern Recognit. 81 (2018) 545–561, https://doi .org /10 .1016 /j .patcog .2018 .04 .022.

[23] R. Liu, Y. Li, L. Tao, D. Liang, H.T. Zheng, Are we ready for a new paradigm shift? A survey on visual deep mlp, Patterns 3 (2022) 100520.
[24] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals, F. Petitjean, G.I. Webb, Proximity forest: an effective and scalable distance-based classifier for

time series, Data Min. Knowl. Discov. 33 (2019) 607–635, https://doi .org /10 .1007 /s10618 -019 -00617 -3.
[25] F. Mörchen, D. Fradkin, Robust mining of time intervals with semi-interval partial order patterns, in: Proceedings of the 2010 SIAM International Conference on

Data Mining, SIAM, 2010, pp. 315–326.
[26] R. Moskovitch, Multivariate temporal data analysis - a review, Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 12 (2022) e1430.
[27] R. Moskovitch, Y. Shahar, Classification of multivariate time series via temporal abstraction and time intervals mining, Knowl. Inf. Syst. 45 (2015) 35–74,

https://doi .org /10 .1007 /s10115 -014 -0784 -5.
[28] R. Moskovitch, C. Walsh, F. Wang, G. Hripcsak, N. Tatonetti, Outcomes prediction via time intervals related patterns, in: 2015 IEEE International Conference on

Data Mining, IEEE, 2015, pp. 919–924.
[29] P. Novitski, C.M. Cohen, A. Karasik, G. Hodik, R. Moskovitch, Temporal patterns selection for all-cause mortality prediction in t2d with anns, J. Biomed. Inform.

134 (2022) 104198, https://doi .org /10 .1016 /j .jbi .2022 .104198.
[30] D. Patel, W. Hsu, M.L. Lee, Mining relationships among interval-based events for classification, in: Proceedings of the 2008 ACM SIGMOD International Confer-

ence on Management of Data, 2008, pp. 393–404.
[31] J. Rebane, I. Karlsson, L. Bornemann, P. Papapetrou, Smile: a feature-based temporal abstraction framework for event-interval sequence classification, Data Min.

Knowl. Discov. 35 (2021) 372–399, https://doi .org /10 .1007 /s10618 -020 -00719 -3.
[32] L. Sacchi, C. Larizza, C. Combi, R. Bellazzi, Data mining with temporal abstractions: learning rules from time series, Data Min. Knowl. Discov. 15 (2007) 217–247,

https://doi .org /10 .1007 /s10618 -007 -0077 -7.
[33] P. Schäfer, The boss is concerned with time series classification in the presence of noise, Data Min. Knowl. Discov. 29 (2015) 1505–1530, https://doi .org /10 .

1007 /s10618 -014 -0377 -7.
[34] E. Sheetrit, N. Nissim, D. Klimov, Y. Shahar, Temporal probabilistic profiles for sepsis prediction in the icu, in: Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2019, pp. 2961–2969.
[35] A. Shifaz, C. Pelletier, F. Petitjean, G.I. Webb, Ts-chief: a scalable and accurate forest algorithm for time series classification, Data Min. Knowl. Discov. 34 (2020)

742–775, https://doi .org /10 .1007 /s10618 -020 -00679 -8.
[36] G. Shitrit, N. Tractinsky, R. Moskovitch, Visualization of frequent temporal patterns in single or two populations, J. Biomed. Inform. 134 (2022) 104169, https://

doi .org /10 .1016 /j .jbi .2022 .104169.
[37] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, E. Keogh, Generalizing dtw to the multi-dimensional case requires an adaptive approach, Data Min. Knowl. Discov.

31 (2017) 1–31, https://doi .org /10 .1007 /s10618 -016 -0455 -0.
[38] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv :1409 .1556, 2014.
[39] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resnet and the impact of residual connections on learning, in: Thirty-First AAAI Conference

on Artificial Intelligence, 2017.
[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
[42] C.W. Tan, A. Dempster, C. Bergmeir, G.I. Webb, Multirocket: multiple pooling operators and transformations for fast and effective time series classification, Data

Min. Knowl. Discov. 36 (2022) 1623–1646, https://doi .org /10 .1007 /s10618 -022 -00844 -1.
[43] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with deep neural networks: a strong baseline, in: 2017 International Joint Conference on

Neural Networks (IJCNN), IEEE, 2017, pp. 1578–1585.
[44] H. Xing, Z. Xiao, D. Zhan, S. Luo, P. Dai, K. Li, Selfmatch: robust semisupervised time-series classification with self-distillation, Int. J. Intell. Syst. 37 (2022)

8583–8610.
[45] J. Yu, Y. Rui, D. Tao, Click prediction for web image reranking using multimodal sparse coding, IEEE Trans. Image Process. 23 (2014) 2019–2032.
[46] J. Yu, M. Tan, H. Zhang, Y. Rui, D. Tao, Hierarchical deep click feature prediction for fine-grained image recognition, IEEE Trans. Pattern Anal. Mach. Intell. 44

(2019) 563–578.
[47] J. Zhang, Y. Cao, Q. Wu, Vector of locally and adaptively aggregated descriptors for image feature representation, Pattern Recognit. 116 (2021) 107952.
[48] L. Zhang, S. Huang, W. Liu, D. Tao, Learning a mixture of granularity-specific experts for fine-grained categorization, in: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2019, pp. 8331–8340.
[49] X. Zhang, Y. Gao, J. Lin, C.T. Lu, Tapnet: multivariate time series classification with attentional prototypical network, in: Proceedings of the AAAI Conference US BIR

D Fou
nd

ati
on
22

on Artificial Intelligence, 2020, pp. 6845–6852.

Isr
ael

-

http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD9B0042F62CA0EC56E669BFF7CFB0431s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD9B0042F62CA0EC56E669BFF7CFB0431s1
https://doi.org/10.1016/j.patcog.2018.04.022
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib8FA97F3D6B1A89AD68573588A8CAF574s1
https://doi.org/10.1007/s10618-019-00617-3
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib564679A948AC1A373C7FC54C726F5D34s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib564679A948AC1A373C7FC54C726F5D34s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibCFD4C9E038D11F8E47C5894DB09F2935s1
https://doi.org/10.1007/s10115-014-0784-5
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibC09DE248C7F32E085270D54049665A85s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibC09DE248C7F32E085270D54049665A85s1
https://doi.org/10.1016/j.jbi.2022.104198
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibCD3FB300DEDC16F77047A6615F2471A6s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibCD3FB300DEDC16F77047A6615F2471A6s1
https://doi.org/10.1007/s10618-020-00719-3
https://doi.org/10.1007/s10618-007-0077-7
https://doi.org/10.1007/s10618-014-0377-7
https://doi.org/10.1007/s10618-014-0377-7
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib07F19B6EFD787A64E582A76DA57644C6s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib07F19B6EFD787A64E582A76DA57644C6s1
https://doi.org/10.1007/s10618-020-00679-8
https://doi.org/10.1016/j.jbi.2022.104169
https://doi.org/10.1016/j.jbi.2022.104169
https://doi.org/10.1007/s10618-016-0455-0
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib079CC8DC6C53025E1FC5C703D7EC3B00s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib749C1DBAE9A2C683232355AED7A78E85s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib749C1DBAE9A2C683232355AED7A78E85s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD2E88E8DB4AEBA47B3B5A02B1F4FF111s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibD2E88E8DB4AEBA47B3B5A02B1F4FF111s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib19919EE9B71C3A14CEDC75E00D2E301Cs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib19919EE9B71C3A14CEDC75E00D2E301Cs1
https://doi.org/10.1007/s10618-022-00844-1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibAFFDC73CD4577ED0203F35DF7F5CE331s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibAFFDC73CD4577ED0203F35DF7F5CE331s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib617A486918EE984E611723FC8DE299D8s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib617A486918EE984E611723FC8DE299D8s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bibB936C49076BCD16525A895880FC92A79s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib73BF713B4BAC5A3D5991D96EDAD59FDEs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib73BF713B4BAC5A3D5991D96EDAD59FDEs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib8D80A6F93F6D44C2DFEC19FFD456ED9Es1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib976C108E69A2C9979F7AB0C8CE30E122s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib976C108E69A2C9979F7AB0C8CE30E122s1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib1A38E625375C8143617189EB33F7F79Cs1
http://refhub.elsevier.com/S0020-0255(23)00732-6/bib1A38E625375C8143617189EB33F7F79Cs1

	INSTINCT: Inception-based Symbolic Time Intervals series classification
	1 Introduction
	2 Background
	2.1 Problem setting: Symbolic Time Intervals series classification
	2.2 Related work
	2.2.1 Distance-based methods
	2.2.2 Feature-based methods
	2.2.3 Computer vision
	2.2.4 Time series classification

	3 INSTINCT: Inception-based Symbolic Time Intervals series classification
	3.1 Phase I: Transform -- STIs series representation as ASTIMs
	3.2 Phase II: Classify -- Inception-based classification of ASTIMs

	4 Evaluation
	4.1 Data
	4.1.1 Real-world data
	4.1.2 Synthetic data

	4.2 Experimental setup
	4.2.1 Experiment 1: Classification performance
	4.2.2 Experiment 2: Scalability analysis
	4.2.3 Experiment 3: Architecture study

	5 Results
	5.1 Experiment 1: Classification performance
	5.2 Experiment 2: Scalability analysis
	5.3 Experiment 3: Architecture study
	5.3.1 Hyperparameters study
	5.3.2 FAP vs GAP
	5.3.3 Sensitivity analysis

	6 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Real-world data
	Appendix B Raw STIs series reconstruction from ASTIMs
	Appendix C Configurations of synthetic datasets for scalability analysis
	Appendix D FAP vs GAP -- Illustration of convergence spikiness estimation metrics
	Appendix E INSTINCT’s runtime on real-world datasets
	References

