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ABSTRACT
The increasing cost of successful cyberattacks has caused a mindset
shift, whereby defenders now employ proactive defenses, namely
software bug hunting, alongside existing reactive measures (fire-
walls, IDS, IPS) to protect systems. Unfortunately the path from
hunting bugs to deploying patches remains laborious and expen-
sive, requires human expertise, and still misses serious memory
corruptions. Motivated by these challenges, we propose bug hunt-
ing using symbolically reconstructed states based on execution
traces to achieve better detection and root cause analysis of over-
flow, use-after-free, double free, and format string bugs across user
programs and their imported libraries. We discover that with the
right use of widely available hardware processor tracing and partial
memory snapshots, powerful symbolic analysis can be used on
real-world programs while managing path explosion. Better yet,
data can be captured from production deployments of live software
on end-host systems transparently, aiding in the analysis of user
clients and long-running programs like web servers.

We implement a prototype of our design, Bunkerbuster, for Linux
and evaluate it on 15 programs, where it finds 39 instances of our
target bug classes, 8 of which have never before been reported and
have lead to 1 EDB and 3 CVE IDs being issued. These 0-days were
patched by developers using Bunkerbuster’s reports, independently
validating their usefulness. In a side-by-side comparison, our system
uncovers 8 bugs missed by AFL and QSYM, and correctly classifies
4 that were previously detected, but mislabeled by AddressSanitizer.
Our prototype accomplishes this with 7.21% recording overhead.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security.
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1 INTRODUCTION
As pressure on companies to swiftly identify and remediate sys-
tem vulnerabilities has increased [47], corporations have adopted
bug hunting strategies. They proactively search for and remediate
problems in their adopted software before adversaries can exploit
them in an attack [70]. Unfortunately, the path from corporate bug
hunting to developer software patch is cumbersome and laborious,
leaving less-equipped companies vulnerable.

Human bug hunters, lacking good inputs to test programs, rely
on fuzz testing (fuzzing) [23, 72, 85, 86, 110] to brute force test cases,
starting from seeds provided by the developers (e.g., regression
tests) or scraped from public databases (e.g., ImageNet [33]) that
offer limited coverage. Such tools often require manually written
scaffolding code to reach deep libraries or APIs [10, 52, 56] and rely
on crashes to signal buggy behavior [11, 93, 99, 111], which is not
always reliable [34, 37, 44]. The process is further complicated by
binaries that lack source code, requiring bug hunters to engage in
extensive reverse engineering [36, 39, 43].

Worse still, the bug hunter then needs to share their find-
ings with the software’s developers. Crashes can corrupt arti-
facts [14, 21, 38, 49, 50, 53, 65, 71, 73, 79, 89, 96, 102–105, 108, 109]
and bugs can be difficult to reproduce due to environment differ-
ences. Capturing stack traces or re-executing the crashing input
with instrumentation [57, 61, 91, 97] offers some insights, but as we
discover in an in-depth case study, the results can be incomplete,
hindering triage. Prior work shows that developers consistently
undervalue or ignore issues they do not understand [9, 46], but
without their aid, the only other remediation choices are incom-
plete stopgaps like input filters [20, 30, 76, 97] or selective function
hardening [15], which incur significant overhead [67].

However, we observe that software testing need not occur in a
vacuum. Namely, companies already have employees constantly
using the software in question, and their real-world usage already
drives the program into deep behaviors within realistic environments.
The data to automate bug hunting and reporting is already within
their reach, so why are they not using it?
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We hypothesize that the disconnect that occurs is due to the
traditional definition of “seed as program input” being insufficient.
While program inputs are easy to collect, they offer little insight
into how to build scaffolding, how to get from sound program states
to buggy ones, and how to explain those bugs in a meaningful way.
Instead, we hypothesize that control flow traces are the better seeds
for automating bug hunting and reporting because they can reveal
the solution to all the above problems while still being efficient
enough to collect from real user environments.

To demonstrate this, we first propose how to segment control
flow traces and save sequential memory snapshots to guide sym-
bolic analysis through code where it is otherwise susceptible to
path explosion [13, 88]. We hypothesize that this control oriented
record and replay of user sessions is suitable for discovering serious
classes of memory corruption, such as those arising from overflows,
use-after-free (UAF), double free (DF), and format string (FS) bugs.
Better still, thanks to the prevalence of hardware assisted processor
tracing1 (PT), production systems can securely capture traces with
user transparency and tolerable overhead.

Notice that while prior work has demonstrated the value of snap-
shots for bug hunting [58], they did not combine them with traces.
Without the accompanying segmented control flow traces leveraged
in our design, such systems are still susceptible to path explosion
due to loops and string manipulation, limiting their scalability in
real-world settings.

However, collecting a corpus of new seeds is only half the battle.
To reach new buggy program states, we also propose a technique
to selectively symbolize predicate data, based on the recorded con-
trol flow traces, to facilitate constrained exploration that prioritizes
certain paths while managing path explosion. To inspect deep API
calls, we propose an analysis to automatically recover parameter
prototypes, eliminating the need for human analysts to implement
scaffolding. To find bugs from benign recordings, we employ bug-
class-specific search strategies and detection techniques that check
uncovered states for symbolic indicators of buggy behavior.

The above technical contribution also brings an additional bene-
fit to our design, which is that the same symbolic constraints can
also be used to perform symbolic root cause analysis [106]. This
recently proposed technique for localizing memory corrupting bugs
has only been demonstrated in single path symbolic analysis, start-
ing from the program entry point, limiting its possible applications.
Our design shows how it can be used in a multi-path setting, start-
ing from the main program entry point or entry points to imported
library APIs, increasing its applicability.

We implement our design as a Linux prototype, named Bunker-
buster, and evaluate it on 15 programs, some of which contain
binaries compiled from over 810,000 lines of C/C++ code, invoking
1,710 imported functions and producing traces 19,392,602 basic
blocks long, on average. Bunkerbuster successfully uncovers 39
bugs, of which 8 are newly discovered by our approach. 1 EDB
and 3 CVE IDs have been issued and patched by developers, using
Bunkerbuster’s reports to independently verifying their novelty.2
In a side-by-side comparison, Bunkerbuster finds 8 bugs missed
by AFL and QSYM, and correctly classifies 4 that AddressSanitizer
1Available in Intel® , AMD® , and ARM® processors.
2We report all bugs to developers, MITRE, and Offensive Security for responsible
disclosure.

/ ∗ c o d e r s / png . c ∗ /
ReadMNGImage ( ) {
5 1 2 9 : p r e v i ou s = image ; / / heap o b j e c t
5 1 3 0 : mng_info−>image = image ;
5 1 3 8 : ReadOneJNGImage ( mng_info ) ; / / 1 s t f r e e
5 1 4 3 : De s t r oy ImageL i s t ( p r e v i ou s ) ; / / 2 nd f r e e
}

/ ∗ c o d e r s / png . c ∗ /
ReadOneJNGImage ( MngInfo ∗ mng_info ) {
3 1 2 6 : De s t r oy ImageL i s t ( mng_info−>image ) ;
}

/ ∗ magick / l i s t . c ∗ /
Des t r oy ImageL i s t ( Image ∗ images ) {
2 3 9 : Des troyImage ( images ) ; / / c a l l s f r e e
}

Figure 1: Source code pertaining to CVE-2017-11403
in GraphicsMagick, summarized. ReadMNGImage calls
ReadOneJNGImage without realizing that it may free image,
making Line 5,143 a DF bug for some paths.

mislabeled. Our prototype accomplishes this with 7.21% recording
overhead and manageable storage requirements. We have open
sourced our prototype and data to facilitate future work.3

2 OVERVIEW
Bunkerbuster’s analysis replaces the laborious process of proactively
hunting for and reporting software bugs in enterprise networks.
Bug hunting should not be confused with intrusion detection (IDS)
or prevention (IPS), which requires reacting swiftly to ongoing
attacks. In place of a human security expert creating a testbed to
fuzz programs or library APIs, Bunkerbuster gathers data from
end-hosts using a kernel driver, cleverly inferring input structures
and segmenting traces to achieve offline binary symbolic execution.

2.1 Real-World Example
To show how Bunkerbuster benefits a bug hunter tasked with find-
ing problems in software, consider the following example based
on CVE-2017-11403, a UAF vulnerability found in GraphicsMag-
ick. For clarity, we will explain this example using the source code
shown in Figure 1, however the real analysis is on binaries. In this
instance, the function ReadMNGImage always frees the heap object
image before returning, but what it does not account for is that a
child function it invokes, ReadOneJNGImage, can also free image
after a certain error, causing a DF.

Suppose that the bug hunter, having heard about all the recent
vulnerabilities found in image processing libraries, wants to analyze
a program his employees are using that imports the GraphicsMagick
library. Unfortunately, he is not familiar with obscure image formats
like MNG, so building fuzzer scaffolding for all of GraphicsMagick’s
APIs would be tedious, and fuzzing the entire program from startup
would be inefficient due to its complexity.
3https://github.com/carter-yagemann/arcus
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Figure 2: Bunkerbuster architecture. End-hosts with PT-enabled kernel drivers collect and filter traces of the target program,
forwarding novel segments to the analysis environment. Symbolic states are reconstructed and then expanded by exploration
plugins. When a bug is detected, symbolic root cause analysis pinpoints the source and produces a report.

Instead, he gives the name of the target program to the Bunker-
buster analysis system, which in turn forwards it to all the end-hosts
with the Bunkerbuster kernel driver installed, as shown in Figure 2.
These systems observe the processes being created locally and any-
time the target program starts, they configure PT for recording. As
the data is collected at the end-host, it locally segments the trace
at calls to imported library functions and hashes them on-the-fly.
Each hash is checked against a filter, and if the segment is novel, it
is forwarded for analysis.

Back at the analysis system, Bunkerbuster uses the incoming
traces along with symbolic execution to reconstruct symbolic states
for each executed basic block. Since the conditions leading to CVE-
2017-11403 are rare, these segments do not directly reach the DF
bug, but some contain invocations of the vulnerable function. Using
its search plugins containing bug-class-specific exploration strate-
gies, Bunkerbuster symbolically expands the set of reconstructed
states, yielding additional states within the same function, includ-
ing the one containing the CVE. When Bunkerbuster checks them
for memory corruption, it finds the state containing the DF. It then
switches to localizing a concise root cause. Bunkerbuster compares
the constraints leading to this buggy state against others sharing
the same predecessor guardian (i.e., conditional check) and deter-
mines the difference that makes the DF reachable. It then traces this
back through the predecessor states, pinpointing the error checking
branch. The end result is a concise, human-readable report, iden-
tifying the site of the first and second frees, and the input error
check in GraphicsMagick that caused the DF.

Notice that if no end-user ever loads an MNG image, the analysis
will not find this DF because the traces will not have any invocations
of the vulnerable function to reference. However, code that is never
invoked is a prime candidate for debloating [51, 66, 83, 84, 92],
which is outside the scope of this work. Conversely, Bunkerbuster
will cover all the code used by monitored users.

2.2 Goals & Assumptions
We focus on discovering and localizing overflow, UAF, DF, and FS
bugs within unobfuscated, benign Linux programs without access
to source code or debug symbols. The limitations imposed by this
scope are discussed further in Section 5.

We assume that the end-hosts contain PT-enabled CPUs, which
also form our trusted computing base (TCB). PT is a hardware
feature that writes directly to physical memory, bypassing all
CPU caches, and is only configurable in the privileged CPU

mode, making it a trusted platform in numerous security sys-
tems [31, 32, 40, 62, 107]. We expect collected data to encode benign
behaviors, motivating the need for bug hunting. In the event that
an end-host captures malicious activity, detection becomes easier.
We envision our system being deployed on enterprise computers
and servers, leaving mobile and embedded devices for future work.

To recover the structure of inputs to APIs as accurately as pos-
sible while covering the diverse range of possible use cases, we
consider two scenarios. The first targets open source C/C++ li-
braries, where we assume access to stub code or source headers
that define the API. This is a necessary part of any public release to
allow other developers to integrate their systems with the API. For
all other cases, we assume the most conservative scenario where
only the binary is available.

3 DESIGN & IMPLEMENTATION
In this section, we elaborate on the steps in Bunkerbuster’s record-
ing and analysis, initially presented at a high level in Subsection 2.1.
Stepping through the workflow sequentially, Subsection 3.1 de-
scribes how the end-hosts record and filter the PT traces that the
analysis uses to recover valid program execution paths. Subsec-
tion 3.2 then describes how memory snapshots are taken at the
end-host and how the analysis selectively symbolizes them to boot-
strap symbolic execution. Given a symbolized snapshot as a starting
state and a matching trace segment, Subsection 3.3 describes how
to recover symbolic representations of all the intermediate program
states along the traced path at basic block granularity.

With a linear sequence of symbolic states for the recorded path
constructed, we then describe how to explore additional paths, pri-
oritized using search strategies based on our domain knowledge of
our target bug classes. We also describe how Bunkerbuster uses the
symbolic constraints for the states to detect and then localize bugs.
Since our techniques are bug-class-specific, we split our description
between UAF/DF, which arise from temporal memory safety vio-
lations, and overflow/FS, which arise from spatial memory safety
violations, in Subsections 3.4 and 3.5, respectively.

3.1 Capturing & Filtering Traces
One technical challenge Bunkerbuster has to overcome is how to
efficiently, securely, and transparently record user sessions. To this
end, we center our design around PT, and then propose a novel way
of hashing recorded segments so redundant ones can be discarded.
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However, before explaining filtering, it is important to understand
what PT is and how Bunkerbuster uses it. For brevity, we will focus
on Intel’s implementation of PT, however similar features exist in
processors made by ARM, AMD, and others.

Intel PT records traces of user space execution directly to phys-
ical memory, where it can then be forwarded by a kernel driver
to persistent storage or remote endpoints. Its recording can be
restricted to a particular process at the hardware level using a con-
figuration register that accepts a CR3 value representing the process’
page table address.

Traces consist of a stream of packets, each recording the outcome
of a branching instruction, indirect call/jump, return, or interrupt.
Binary branches are recorded as a single taken-not-taken (TNT)
bit, whereas other events yield a target instruction pointer (TIP).
To decode the trace into an instruction sequence, the decoder also
needs additional side-band data about the traced process’ memory
space and thread scheduling, which we describe next.

First, the decoder needs the process’ executable pages in order
to recover instructions. Bunkerbuster’s kernel driver handles this
by hooking relevant system calls (e.g., mmap, mprotect) and record-
ing memory pages alongside the PT trace. Bunkerbuster can then
linearly disassemble the memory, starting at the program’s entry
point and consulting the next PT packet whenever a branch is
encountered, to recover every executed instruction.

Second, in order to distinguish threads that share the same page
table (CR3 value), the kernel driver also hooks context switches to
record when threads are swapped in and out of CPU cores. The
driver also hooks the fork and exec system calls so it can detect
and trace child processes created by the target program.

Trace Filtering. Unlike prior PT systems, Bunkerbuster has to
account for the fact that users and services may engage in repetitive
tasks, yielding partially redundant execution traces. To address this,
our driver quickly hashes trace segments on-the-fly and compares
them against a global map, discarding ones that have already been
observed, using the following algorithm:

(𝑢, 𝑣) ∈ 𝑇 : 𝑢 ≪ 1 ⊕ 𝑣 mod 𝑆 (1)
where 𝑢 and 𝑣 are virtual address offsets, relative to their object
bases to account for ASLR, recovered from trace 𝑇 . The result is
a bit offset within a map of size 𝑆 bits corresponding to the edge
(𝑢, 𝑣). The global map is initialized with all bits set to 0 and then as
edges are decoded from the PT trace, their corresponding bits are
set to 1. If a trace segment adds any novel bits to the global map, it
is forwarded for analysis, otherwise it is discarded.

3.2 Symbolizing Memory Snapshots
Alongside the data described in Subsection 3.1, the end-host driver
also records snapshots of register values andmemory that will serve
as starting states for symbolic execution. Specifically, when the pro-
gram is loaded at runtime, the driver hooks the program’s main
entry point and any entrances to imported APIs (i.e., library func-
tions) by placing traps in the process’ procedure linkage table (PLT).
Once captured, Bunkerbuster symbolizes the input data, which for
the main entry point is the program’s input arguments and for
APIs are the called function’s parameters. This data is replaced
with unconstrained symbolic variables, enabling Bunkerbuster to

0000000000001142 <foobar>:
...
114a: mov    %rdi,-0x18(%rbp)
114e: mov    %esi,-0x1c(%rbp)
1151: mov    %rdx,-0x28(%rbp)
...
1164: mov    -0x18(%rbp),%rax
1168: add    %rdx,%rax
116b: movzbl (%rax),%eax
116e: movsbl %al,%eax
...
1183: mov    -0x28(%rbp),%rax
...
118c: callq  *%rax

u:{rdi}
u:{rdi,esi}
u:{rdi,esi,rdx}

u:{rdi[s8],esi,rdx}

u:{rdi[s8],esi,rdx[c]}

Figure 3: Binary-only scenario, with color added for clarity.
The boxes show the usage of non-clobbered values. The first
snippet reveals foobarhas 3 arguments, the next reveals that
the RDI argument is a char pointer (denoted [s8]), and the
last reveals RDX is a code pointer ([c]).

reason about all possible input values to the program and imported
APIs. For this reason, each trap only needs to be used once, and
is then removed, minimizing runtime overhead. This also allows
Bunkerbuster to analyze snapshots (and their corresponding trace
segments) in any order because there are no prior constraints.

Generally speaking, under-constrained symbolic execution can
result in false positive detections, i.e., bugs that cannot actually
be reached in real executions. However, because we are careful to
only snapshot the entry points to the program and its imported
libraries, Bunkerbuster’s results do not have this issue. Bugs found
using snapshots of the program’s entry point will be inherently
reachable, and of relevance to the program’s developers. Conversely,
for API snapshots, so long as Bunkerbuster halts its analysis at the
return from the called function,4 any discovered bugs may not be
reachable within the context of the program that was recorded, but
may be reachable by other programs that also import the same
library, making the results relevant to library developers. In this
way, Bunkerbuster decomposes long traces into smaller segments,
simplifying the symbolic execution.

One small caveat we discovered while designing Bunkerbuster
is that while most inputs within snapshots should be symbolized,
code pointers passed to APIs should not. The reason is that some APIs
are designed to accept code pointers, which may serve as callback
functions, helper functions, and more. If these are replaced with
unconstrained symbolic variables, then their use will be difficult
to distinguish from control flow hijacking, despite being intended
behavior. The reason why will become clearer in Subsection 3.5,
which describes how Bunkerbuster detects overflow bugs.

Whereas program arguments adhere to a fixed memory layout,
as specified by the operating system, the locations and types of
API arguments has to be recovered by Bunkerbuster. Recall from
Subsection 2.2 that we aim to handle both public and private APIs.
Consequently, we propose two approaches for inferring and sym-
bolizing the input arguments, one based on parsing C/C++ headers
and the other based on binary-only analysis.

4Analysis beyond this point can yield false positives because the returned value is
under-constrained.
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Source-Based Inference. When source headers are available, we
use a C/C++ parser to read the API’s function prototype into an ab-
stract syntax tree (AST), terminating with basic data types of known
size (e.g., int, void pointer). All non-pointer types are treated as
data. For pointers, if the type is a function prototype, then it is a
code pointer. Similarly, pointers to basic data types are data. How-
ever, it is ambiguous when the type is void, which could point to
data or code. In such cases, the parser assumes the pointer points to
code to remain conservative. The result is a data structure defining
the offset, size, and type of each element for each argument. This
is then combined with the calling convention for the architecture
being analyzed to pinpoint these elements in registers and memory.
Notice that because libraries are shared between programs, factors
like padding are treated consistently across systems and is easy to
account for. When data pointers point to buffers of arbitrary length,
they are replaced with new large buffers of unconstrained symbolic
bytes to test for overflows.

Binary-Based Inference. When headers are unavailable, our anal-
ysis leverages the recorded trace, shown with a concrete example
in Figure 3. Bunkerbuster steps through the traced basic blocks
in order and tracks where registers and stack values are used in
operations versus being clobbered by writes. If a non-clobbered
value is used, it is likely an argument. The type is inferred based
on how the loaded value is manipulated. If it appears in a call, it is
treated as a code pointer. If it is used in subsequent loads, it is a data
pointer. Otherwise it is treated as a basic data type. It is possible
for this approach to miss a parameter if it is never used, however
we did not observe this in our evaluation.

During implementation, we tested the robustness of this ap-
proach by comparing its outputs against those of the source-based
technique and verifying that they match. We include a breakdown
of the tested libraries in Table 5 of the Appendix.

3.3 Symbolic State Reconstruction
Once Bunkerbuster has a symbolized snapshot for a starting state
(Subsection 3.2), and a corresponding trace segment (Subsection 3.1),
it then needs to recover the intermediate program states that cover
the recorded execution path. Notice that Bunkerbuster cannot sim-
ply take more snapshots because doing so comes at a performance
cost, so instead our solution is to use symbolic execution to re-
cover the missing states. As an added benefit, this will also enable
Bunkerbuster to consider states beyond what was concretely exe-
cuted, potentially finding additional bugs.

To perform the reconstruction, each instruction is emulated and
constraints are added to the programs state to encode all possible
data that can reach the current point in the execution. When a
branching instruction is encountered, a satisfiability modulo the-
ories (SMT) solver evaluates the accumulated constraints to yield
reachable successor states. However, Bunkerbuster initially focuses
on only recovering the path that was recorded, so it only keeps the
successor that matches the next address in the trace. In this way,
there is only 1 active state per step.

CPU Architecture-Specific Considerations. Although following a
linear sequence of executed addresses is conceptually intuitive, in
practice real-world encoding schemes can introduce ambiguities

va
lid

at
e_

im
ag

e+
0x

0 
(0

x1
24

3)

va
lid

at
e_

im
ag

e+
0x

41
 (0

x1
28

4)

va
lid

at
e_

im
ag

e+
0x

1b
 (0

x1
25

e)

m
ai

n+
0x

29
 (0

x1
2b

4) m
ai

n+
0x

4f
 (0

x1
2d

a)

pr
in

tf+
0x

0 
(0

xf
8)

m
ai

n+
0x

2d
 (0

x1
2b

8)

m
ai

n+
0x

68
 (0

x1
2f

3)

m
ai

n+
0x

9b
 (0

x1
32

6)

fre
e_

im
ag

e+
0x

0 
(0

x1
1f

6)

fre
e_

im
ag

e+
0x

13
 (0

x1
20

9)

fre
e_

im
ag

e+
0x

20
 (0

x1
21

6)

fre
e+

0x
0 

(0
xe

8)

fre
e_

im
ag

e+
0x

3c
 (0

x1
23

2)

fre
e_

im
ag

e+
0x

30
 (0

x1
22

6)
fre

e_
im

ag
e+

0x
48

 (0
x1

23
e)

fre
e_

im
ag

e+
0x

4b
 (0

x1
24

1)

m
ai

n+
0x

a7
 (0

x1
33

2)
va

lid
at

e_
im

ag
e+

0x
3a

 (0
x1

27
d)

va
lid

at
e_

im
ag

e+
0x

2e
 (0

x1
27

1)

va
lid

at
e_

im
ag

e+
0x

46
 (0

x1
28

9)

fw
rit

e+
0x

0 
(0

x1
10

)

m
ai

n+
0x

4d
 (0

x1
2d

8)

Figure 4: CFG created by the UAF module for a real-world
case (subgraph shown for brevity). Black edges are the path
traced by PT and blue nodes are states the module discov-
ered. The blue edges show a discovered path leading to a free,
followed by the red path leading to a UAF bug (red node).

that must be resolved carefully. One prevalent case occurs in proces-
sors supporting extended instruction sets (ISAs), such as IA64 and
AMD64. Among the added instructions are complex operations like
Intel’s “repeat” instructions, which allow compilers to implement
an entire loop in one instruction.5 When executing concrete mem-
ory in a real processor, these instructions are deterministic, so Intel
PT ignores them. However, in symbolic analysis, two successor
states become reachable if symbolic memory is accessed: one that
completes the instruction and another that continues its iterating.
Since the trace offers no guidance, our solution is to “iterate” on the
repeat instruction as many times as possible, given the symbolic
constraints, because this is most likely to reveal to an overflow bug.
Once the analysis must advance past the complex instruction, it
synchronizes back to the trace and continues.

3.4 Use-After-Free & Double Free Bugs
The UAF module (also covering DF) relies on a value set analysis
(VSA) over the symbolic states. However, unlike a typical VSA that
tracks the concrete pointers to allocated and freed memory buffers,
Bunkerbuster’s VSA is performed using symbolic pointers, con-
strained by the symbolic execution to encode all possible values at
the current program state. This carries several advantages. For ex-
ample, in the evaluation presented in Subsection 4.3, we encounter
a case where AddressSanitizer, having access to only a single con-
crete input provided by a fuzzer, concluded that a pointer passed to
free could cause an invalid free, since the pointer’s value was an
address that was not allocated. However Bunkerbuster, using the
symbolic representation of that same pointer, detected that there
were other satisfiable values for it, some of which corresponded to
addresses that were allocated, revealing the bug to really be a UAF.

Detection. To perform the VSA, we assume knowledge of the
syntax of memory management functions in advance, which is
easily achievable in practice because most programs rely on a few

5strlen can be implemented in IA64 using a single repnz scas instruction.
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standard implementations. Even when a wrapper is placed around
memory management functions for portability across systems, we
find that Bunkerbuster can track the underlying standard library
while disregarding the wrapper. In the case of the real-world pro-
grams in our evaluation dataset, they all rely on either libc or
jemalloc. There are also algorithms to automatically detect and in-
fer memory management functions [26], which can be incorporated
in future work, but are not implemented in our initial prototype.

When the program calls into an allocation function, Bunker-
buster records the locations of the pointer, the allocated buffer, and
its size, in an allocated set. If the size is symbolic, Bunkerbuster
evaluates it to its maximum satisfiable value. When a pointer is
passed to a free function, Bunkerbuster evaluates the symbolic con-
straints to determine which buffer is being referenced and moves
it into a freed set. Notice that the referenced buffer could be one
that is already freed, in which case a DF bug is detected. Similarly,
Bunkerbuster checks any dereferenced pointers in each discovered
state, and if one can point to a freed buffer, it is a UAF bug.

Search. With symbolic buffer and pointer metadata recovered via
VSA, Bunkerbuster’s search strategy first recovers function bound-
aries, which are determined based on the calls and returns contained
within the trace, and then labels which functions manipulate heap
based on the collected pointer metadata. The implementation of the
algorithm to recover all the accessed memory addresses for a basic
block is provided in the Appendix as Algorithm 1. Bunkerbuster
then searches these functions for additional states using depth-
first-search to see if they can cause a UAF or DF. By sticking only
to functions reached during tracing, Bunkerbuster can avoid path
explosion by returning to any of the traced states reconstructed in
Subsection 3.3.

Figure 4 shows a partial control flow graph (CFG) for a UAF bug
found with this strategy. The initial states from the trace are shown
in white, connected by black edges. Nearby states found during
exploration are shown in blue, revealing the blue path to a free.
Further exploration of this and other traced functions then reveals
the red path leading to a UAF.

Root Cause. Once detected, the symbolic root cause report pre-
pared for the developers contains the basic block that allocated the
accessed buffer, the one that freed it, and the one that performed
the buggy access. To propose a preliminary patch, the module con-
structs a control dependency graph (CDG) over the path leading to
the UAF, revealing all the conditional branches the violating basic
block’s reachability depends on. The branch nearest to the violator
is selected (based on shortest path) and the state for the alternate
branch (which did not cause a bug) is checked for its constraints. If
these constraints contradict the UAF state, this becomes the prelim-
inary patch, otherwise the report advises the developers to place a
new guard condition before the violating basic block.

3.5 Overflow & Format String Bugs
Detection. Bunkerbuster’s overflow detection module focuses on

bugs that can manifest into control flow hijacking, taking advan-
tage of the fact that all external input data is symbolized in the
starting memory snapshot (Subsection 3.2). Consequently, if the
program counter for a state ever becomes symbolic due to one of

these variables, this means external input can directly control the
execution of the code via crafted inputs, which is a serious vulnera-
bility. Notice that symbolic constraints are already propagated by
the symbolic execution, so detection is performed by querying the
SMT solver to check whether the program counter is symbolic (i.e.,
has more than 1 satisfiable value). If it is, an overflow has occurred.

Search. Bunkerbuster searches for overflows by identifying all
the loops that appear in the trace, which is accomplished by trans-
forming the linear execution into a CFG and then using a depth-first
search to find all the backward edges in the graph.6 Once identi-
fied, the module’s search strategy is to stress the known loops by
iterating through them as much as possible (given the symbolic
constraints) and then observe the side effects in subsequent suc-
cessor states. However, stressing every loop encountered in the
trace is time consuming, so Bunkerbuster employs two strategies
to prioritize loops that are more likely to lead to overflows.

First, not all loops write to memory and for the ones that do,
not all writes rely on a changing pointer value or offset, which is
necessary to cause an overflow. We coin this behavior as stepping
and Bunkerbuster checks for instances of it in the recorded trace.
Specifically, for each visit to each loop in the reconstructed CFG,
Bunkerbuster collects the target memory address of each write in-
struction and examines how its target changes over each iteration.
If there exists a write instruction such that each invocation targets
an always increasing (or decreasing) memory address, then the loop
is prioritized as a candidate for overflow analysis. An implementa-
tion of this algorithm is provided in the Appendix as Algorithm 2.
Notice that since symbolic states are examined, the pointers can
have multiple satisfiable values, so the satisfiability test for the
stepping criteria is performed by the SMT solver.

Next, the module takes into special consideration loops that en-
gage in counting behavior because subsequent overflow candidates
may have control dependencies to the computed value. For example,
a string copying method can be implemented as two loops, the first
counting how many bytes are in the string and the second copying
them, as shown in Figure 5. If our algorithm blindly stresses the
counting loop, its final written value will be maximized and then
the subsequent copying loop will have to iterate the appropriate
number of times. However, once the module detects that a code
or return pointer in memory has been corrupted, continuing to
stress the loop is excessive. Our solution is to detect counting loops,
similarly to how stepping is detected, and replace the final value
with a new symbolic variable constrained to all of the original’s
intermediate values. For example, if the counting loop in Figure 5
can iterate up to 4,096 times, rather than constraining length to
4096, it is replaced with the symbolic integer set [1, 4096]. This
allows it to discover the subsequent bug in fewer steps.

Once candidate loops have been stressed by iterating them as
much as possible (or until a return pointer on the stack is overwrit-
ten), the module explores successor states until a return executes.
If a control flow hijack is not detected by this point, it moves on to
the next candidate until none remain.

Root Cause. To generate a report, the module first includes the ba-
sic block where the hijack occurred. Next, it identifies the memory

6See NetworkX’s find_cycle algorithm for a suitable implementation.
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 1. void my_strcpy(char *src, char *dst) {
 2.     int length = 0;
 3.     char *ptr = src;
 4.     // “counting” loop
 5.     while (*ptr) {
 6.         ptr++;
 7.         length++;
 8.     }
 9.
10.     // “stepping loop”
11.     for (int i = 0; i < length; i++) {
12.         dst[i] = src[i];
13.     }
14.     dst[length] = 0;
15. }
16.
17. void foobar() {
18.     char *m_dst[128];
19.     char *m_src = {‘A’ * 4096, 0};
20.     my_strcpy(src, dst);
21. }

RCX := [4096]
RCX := [1, 2, …, 4096]

RCX := [1, 2, …, 4096]
RCX := 132

Figure 5: Counting loop example. Here the number of itera-
tions of Line 12 depends on length, set by the loop starting
at Line 5. When foobar passes my_strcpy a 4097 byte string,
the register holding length (RCX) would normally become
4096 by Line 9. Ourmodule overwrites RCXwith a symbolic
variable, allowing Line 11 to exit sooner, and then verifies
the control hijack via a corrupted return pointer at Line 21.

location of the symbolic pointer that triggered the hijack using the
symbolic constraints. An implementation of this algorithm is in the
Appendix (Algorithm 3). Next, it rewinds backwards through the
predecessor states until it finds the one that first made the pointer
symbolic and adds it to the report. The module then generates a
CDG for the execution path leading to this state, selects the nearest
conditional branch in terms of shortest path, and checks the alter-
nate branching states for contradicting constraints. If any are found,
they become the preliminary patch for the developers, otherwise a
new guarding branch should be placed before the corrupting state.

Format String Bugs. Wefind that unlike UAFs, DFs, and overflows,
FS bugs are usually not as constrained by control flow. Specifically,
if a call site contains a FS vulnerability, reaching it via any path is
sufficient for discovering the bug. For this reason, we do not employ
a tailored search strategy for FS and instead perform detection over
the states found by the other exploration modules. In practice,
format specifier strings should always be constant, turning them
into read-only data at compile time. Consequently, for each call to
a known format string function (e.g., printf), the module checks
whether the specifier pointer or any of its content is symbolic. If
it is, this means input data is able to directly control the specifier,
which is a bug. In such cases, the root cause report identifies the
caller of the format string function and the predecessor state that
wrote to the specifier.

4 EVALUATION
We aim to answer the following questions in our evaluation:

(1) Is Bunkerbuster able to detect bugs within our covered classes?
We select 15 widely-used commodity programs and generate
a corpus of benign inputs. After analysis, Bunkerbuster finds
39 bugs, of which 8 are new, never before reported cases.
We manually verify the presence of all bugs. 1 EDB and 3
CVE IDs have been issued and patched by developers using
Bunkerbuster’s reports.We alsomeasure Bunkerbuster’s code
coverage to show that its exploration converges.

(2) Is Bunkerbuster’s exploration effective compared to prior tech-
niques? We compare against AFL [112] and QSYM [111] on
our target programs, starting from similar seeds. After 1 week,
Bunkerbuster finds 8 bugs missed by the other systems.

(3) Is Bunkerbuster’s root cause analysis valuable compared to
existing instrumentation? We compare Bunkerbuster’s root
cause reports for Autotrace against those from QSYM with
AddressSanitizer [91]. Bunkerbuster provides more accurate
class labels in 4 cases.

(4) Are Bunkerbuster’s exploration heuristics effective? We com-
pare the exploration techniques described in Section 3 against
breadth-first and depth-first search and find that Bunker-
buster outperforms across all trials by better managing path
explosion.

(5) Is Bunkerbuster feasible to deploy in terms of runtime and
storage overhead? We measure the performance and storage
overheads of tracing programs using the SPEC CPU 2006
benchmark and Nginx, averaging 7.21% runtime overhead.

(6) Is Bunkerbuster’s symbolic root cause analysis over partial paths
correct? We repeat the main experiment from the original
symbolic root cause analysis work [106] using Bunkerbuster
and verify our prototype produces the same results.

Experimental Setup. We use 1 computer to represent the end-host
for tracing and 1 server to perform the analysis. Each device runs
Debian Buster and contains an Intel Core i7-7740X processor, 32GB
of memory, and solid state storage. Our prototype uses angr [95] as
its symbolic execution engine and is implemented in 7,062 Python
and 1,208 C source lines of code (SLoC).

Dataset & Selection Criteria. To select our target programs for
evaluation, we start by considering the packages offered in Debian’s
APT repository, filtered using the C/C++, CLI, and GUI tags, to en-
sure we only consider standalone programs written in languages
that can contain memory corruption bugs. We then cross-reference
MITRE’s CVE database to isolate programs that contain or import
(via libraries) code with known prior overflow, UAF, DF, and FS
vulnerabilities, as these may contain more that have yet to be dis-
covered. From this, we randomly pick 15 programs for testing.

We also manually assemble a corpus of benign inputs for each
program by examining test cases and documentation. For CLI pro-
grams, we ensure the corpus has at least one case for each possible
flag. For GUI programs, we manually perform some basic actions,
such as opening, modifying, and saving files. When programs re-
quire complex input formats (e.g., images), we collect valid inputs
from public sources like ImageNet [33].
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Table 1: System Evaluation for Real-World Programs

ID Type Program Component Version # Traces # Novel (%) # Snaps # BBs # APIs Find (s)
EDB-47254 Ovf abc2mtex main 1.6.1 1,209 166 13.7 166 124,248 26 27
CVE-2004-0597 Ovf Butteraugli libpng 1.2.5 176 78 44.3 78 1,648,790 112 15
CVE-2004-1257 Ovf abc2mtex main 1.6.1 1,209 166 13.7 166 50,120 26 97,188
CVE-2004-1279 Ovf jpegtoavi main 1.5 333 18 5.4 18 46,313 15 82,050
CVE-2013-2028 Ovf Nginx main 1.4.0 5 4 80.0 312 809,977 64 4,538
CVE-2009-5018 Ovf gif2png main 2.5.3 1,709 39 2.3 39 24,210,156 12 10
CVE-2017-7938 Ovf dmitry main 1.3a 10 10 100.0 10 56,488,245 20 78
CVE-2017-9167 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 23,764,196 84 2,659
CVE-2017-9168 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 74,252 84 3,868
CVE-2017-9169 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 74,753 84 728
CVE-2017-9170 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 74,543 84 2,868
CVE-2017-9171 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 33,965,824 84 786
CVE-2017-9172 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 95,561,159 84 6,038
CVE-2017-9173 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 33,965,824 84 5,995
CVE-2017-9191 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 23,070,692 84 5,364
CVE-2017-9192 Ovf autotrace libautotrace 0.31.1 55 37 67.3 37 23,764,196 84 3,010
CVE-2018-12326 Ovf redis-cli main 4.0.9 1,253 31 2.5 31 112,144 40 49
CVE-2018-12327 Ovf ntpq main 4.2.8p11 15 11 73.3 11 194,489 42 1,316
CVE-2018-18957 Ovf GOOSE libiec61850 1.3 5 2 40.0 6 65,198 9 11
CVE-2019-14267 Ovf pdfressurect main 0.15 199 76 38.2 76 8,901,803 18 16,171
* CVE-2020-9549 Ovf pdfressurect main 0.19 199 76 38.2 76 9,497,364 18 14,744
* CVE-2020-14931 Ovf dmitry main 1.3a 10 10 100.0 10 165,235 20 123
Will Not Fix Ovf GIMP glibc 2.2.5 26 25 99.2 21,572 46,757,444 278 1
* CVE-2020-35457 Ovf GIMP glib 2.58.3 26 25 99.2 21,572 60,406,299 278 12
EDB-46807 Ovf MiniFTP main 1.0 7 3 42.8 33 60,849 45 7
* Patched FS dmitry main 1.3a 10 10 100.0 10 125,662 20 16
CVE-2017-9162 UAF autotrace libautotrace 0.31.1 55 37 67.3 37 95,561,159 84 3,253
CVE-2017-9163 UAF autotrace libautotrace 0.31.1 55 37 67.3 37 90,334 84 3,253
CVE-2017-9182 UAF autotrace libautotrace 0.31.1 55 37 67.3 37 30,386,474 84 2,873
CVE-2017-9183 UAF autotrace libautotrace 0.31.1 55 37 67.3 37 413,022 84 3,253
CVE-2017-9190 UAF autotrace libautotrace 0.31.1 55 37 67.3 37 40,806,309 84 3,253
CVE-2017-14103 UAF GraphicsMagick main 1.3.26 4 3 75.0 3 2,520,481 62 646
CVE-2019-17582 UAF PHP libzip 7.4.14 6 6 100.0 145 5,980,255 312 72
* Reported UAF autotrace libautotrace 0.31.1 55 37 67.3 37 40,632,944 84 3,253
* Reported UAF autotrace libautotrace 0.31.1 55 37 67.3 37 74,506 84 3,253
* Reported UAF autotrace libautotrace 0.31.1 55 37 67.3 37 40,632,944 84 3,253
* EDB-49259 UAF GIMP babl 0.1.62 26 25 96.2 21,572 46,757,444 278 15
CVE-2017-11403 DF GraphicsMagick main 1.3.26 4 3 75.0 3 2,513,590 62 634
CVE-2017-12858 DF PHP libzip 7.4.14 6 6 100.0 145 5,980,255 312 72

Average: 189 36 64 1,710 19,392,602 90 7,045
* New vulnerability discovered by Bunkerbuster.

4.1 Bug Hunting in Real-World Programs
Methodology. For each of the 15 real-world programs in our

dataset, we allow Bunkerbuster to trace and analyze our corpus of
benign inputs for 1 week. We also measure Bunkerbuster’s code
coverage over forwarded traces to test whether it converges, which
is relevant to determining its usability in real-world deployments.

Results. Table 1 shows the results produced by Bunkerbuster’s
analysis for the gathered data using our target programs and input
corpus. In total, 39 bugs were found across the 15 tested programs.
The “ID” column shows that 31 of the found bugs pertain to already
publicly known vulnerabilities, whereas 8 have never been reported
before. We manually inspect these cases to verify their presence.
In 1 case, our prototype found a previously reported bug that the
developers decided not to fix due to its performance consequences

versus the relatively low security impact. 1 bug has been issued an
EDB ID by Offensive Security and 3 CVE IDs by MITRE. Developers
have patched them, using our system’s reports to independently
review and verify their novelty and impact. Some of these bugs were
highly exploitable, including a now patched remote code execution
(RCE) vulnerability, triggered via a WHOIS response.

The “Type” column lists the type of each bug. In total, Bunker-
buster found 25 overflows (Ovf), 1 FS bug, and 13 UAFs/DFs. The
“Program” and “Component” columns report where the bugs reside,
with “main” denoting the main executable object. 24 bugs were
found within import libraries and 15 were inside the main object.
We also report the version number of the vulnerable component
for completeness. We observe that Autotrace is particularly buggy,
with 17 vulnerabilities residing within the main object. Conversely,
while GIMP is associated with 3 bugs, they were all found within
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Figure 6: Basic block coverage for traces forwarded to the
analysis, cumulatively.

imported libraries, demonstrating the importance of being able to
analyze these APIs.

The “# APIs” column counts how many unique function imports
were segmented by Bunkerbuster, using its symbolized memory
snapshots and automatic prototype recovery. In other words, this
is the number of APIs a human analyst would have to build scaf-
folding for if they were not using Bunkerbuster and wanted similar
results. On average, 90 unique APIs were segmented per program,
with counts ranging from 9 (GOOSE) to 278 (GIMP). Bunkerbuster
eliminates the need to manually perform this laborious task.

The “# Traces” column reports how many traces (not segments)
were recorded. On average, the end-host monitored 189 execution
sessions per program. “# Novel” is the number of traces that con-
tained at least 1 novel segment forwarded for analysis. On average,
36 where novel per program. For most programs, even with as few
as 4 traces, at least 1 was filtered, demonstrating the importance
of being able to identify and remove redundant data. The “# Snaps”
column shows the number of trace segments and snapshots for-
warded. On average, 1,710 were forwarded for analysis per program.
In the case of GIMP, our input corpus yielded a comparatively high
number of API snapshots. This is due to GIMP being one of the
largest programs in our dataset, compiled from over 810,000 lines of
C/C++ code, with a sophisticated architecture where each plugin is
itself a standalone executable with additional library dependencies.
For example, one of the babl functions found to contain a vulnera-
bility was not invoked by GIMP directly, but rather by its plugin
for loading PNG images. Trying to naively symbolically execute
46,757,444 basic blocks (from GIMP’s entry point, through the PNG
plugin, into babl) would be difficult for prior work. Bunkerbuster
succeeds thanks to its ability to segment.

“# BBs” records the number of traced basic blocks and “To Find”
reports the number of seconds it took for the analysis to make its
discovery. On average, traces containing bugs were 19,392,602 basic
blocks long and bugs were found in 7,045 seconds, i.e., within 2
hours or so. Some bugs were found in as little as 1 second, while oth-
ers took over 4 hours, depending on the complexity of the recorded
behavior. Interestingly, because Bunkerbuster is able to segment
and snapshot APIs, there is little correlation between trace length
and the time to find bugs. For example, despite one GIMP trace

Table 2: Bunkerbuster Vs. AFL & QSYM

ID Type Program BB AFL QSYM
EDB-47254 Ovf abc2mtex 1 0 0
CVE-2004-1257 Ovf abc2mtex 1 350 246
Patched FS dmitry 1 0 0
CVE-2020-14931 Ovf dmitry 1 5 35
CVE-2020-9549 Ovf pdfresurrect 1 0 0
CVE-2019-14267 Ovf pdfresurrect 1 88 108
CVE-2017-11403 UAF GraphicsM. 1 0 25
CVE-2017-14103 UAF GraphicsM. 1 0 0
CVE-2018-12327 Ovf ntpq 1 15 27
CVE-2018-12326 Ovf redis-cli 1 18 44
CVE-2009-5018 Ovf gif2png 1 88 163
CVE-2004-1279 Ovf jpegtoavi 1 0 0
CVE-2004-0597 Ovf Butteraugli 1 72 65
CVE-2018-18957 Ovf GOOSE 1 1 1
CVE-2013-2028 Ovf Nginx 1 0 0
EDB-46807 Ovf MiniFTP 1 32 29
Will Not Fix Ovf GIMP 1 0 0
CVE-2020-35457 Ovf GIMP 1 0 0
EDB-49259 UAF GIMP 1 0 0
CVE-2019-17582 UAF PHP 1 0 0
CVE-2017-12858 DF PHP 1 7 7

being 60,406,299 basic blocks long, the bug it revealed was uncov-
ered in 12 seconds. Conversely, several Autotrace traces of about
40,000,000 basic blocks each uncovered bugs in about 1 hour.

Figure 6 presents the coverage of our analysis over forwarded
traces (i.e., after end-host-side filtering). To normalize each pro-
gram’s curve, we present a cumulative distribution function (CDF)
of the percentage of novel basic blocks discovered versus the per-
centage of traces analyzed. For all target programs, by the time 50%
of the traces were analyzed, at least 80% of the total discovered
basic blocks had been found, demonstrating that Bunkerbuster’s
analysis converges. This is also consistent with the change in ratio
of segments being filtered by the end-host over time.

4.2 Comparing Prior Exploration Techniques
Methodology. We compare Bunkerbuster against AFL [112], a

highly popular greybox fuzzer, and QSYM [111], a recent concolic
execution hybrid fuzzer, for this experiment. We pick these systems
because they work in the binary-only setting for a wide range of
bug classes, whereas other prior work requires source code [48] or
is limited to a single class [59, 88], which would make for an unfair
comparison. For consistency, we run each system on each target
program for 1 week, starting from the same corpus of seeds. For
each unique crash (as determined by AFL and QSYM), we manually
inspect it to determine the bug class and root cause. We measure
which bugs are detected by each system and how many reports are
generated. We present the results for Autotrace in Subsection 4.3
as an extended case with crashes analyzed by AddressSanitizer.

Results. The results are presented in Table 2. In several cases,
AFL and QSYM were unable to detect vulnerabilities found by
Bunkerbuster. For example, they were unable to find the FS bug in
DMitry because it requires a specific set of command line arguments
to reliably cause a crash. Conversely, Bunkerbuster detected that
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Table 3: Bunkerbuster Vs. AddressSanitizer

ID Location BB QSYM + AS
CVE-2017-9167 input-bmp.c-337 Ovf Ovf
CVE-2017-9168 input-bmp.c-353 Ovf Ovf
CVE-2017-9169 input-bmp.c-355 Ovf Ovf
CVE-2017-9170 input-bmp.c-370 Ovf Ovf
CVE-2017-9171 input-bmp.c-492 Ovf Ovf
CVE-2017-9172 input-bmp.c-496 Ovf Ovf
CVE-2017-9173 input-bmp.c-497 Ovf Ovf
CVE-2017-9191 input-tga.c-252 Ovf Ovf
CVE-2017-9192 input-tga.c-528 Ovf Ovf
CVE-2017-9162 autotrace.c-191 UAF UNDEF
CVE-2017-9163 pxl-outline.c-106 UAF UNDEF
CVE-2017-9182 color.c-16 UAF UAF
CVE-2017-9183 autotrace.c-309 UAF UNDEF
CVE-2017-9190 bitmap.c-24 UAF BADFREE
Reported pxl-outline.c-140 UAF -
Reported pxl-outline.c-609 UAF -
Reported color.c-10 UAF -

symbolic format specifiers were being passed to libc, alerting it
to the bug even in non-crashing cases. In general, we observed
that the mutation algorithms used by AFL and QSYM are not well
suited for fuzzing CLIs, which is also noted in AFL’s documentation.
We also observe that of the 4 UAFs listed in Table 2, QSYM only
found 1 and AFL none. QSYM and AFL also struggled to handle
GIMP and GraphicsMagick due to their size and complexity, causing
them to miss 10 and 11 bugs, respectively. It is possible that these
tools would perform better if an expert human analyst created
scaffolding around the imported libraries, but in GIMP’s case, there
are 70 unique libraries with 1,288 exported functions to consider.
Bunkerbuster relieves the analyst of this task.

In almost all of the cases where the prior systems found the
same bug as Bunkerbuster, the former generated over 15 redundant
reports. This is because AFL and QSYM rely on stack traces to
determine the uniqueness of crashes, which are sometimes unre-
liable, such as when dealing with overflows. For example, QSYM
generated 108 reports for CVE-2019-14267 and 246 for CVE-2004-
1257 because a stack corruption mislead it to classify each crash
as unique. Bunkerbuster avoids this fatigue inducing redundancy
using its symbolic root cause analysis, resulting in only 1 report
per bug. Curiously, while QSYM generated more unique crashes
than AFL overall, it only led to the discovery of 1 additional bug.
This is likely due to the sparsity of bugs in real-world programs.

4.3 Comparing Prior Root Cause Techniques
Methodology. In this experiment, we perform the same evalu-

ation as described in Subsection 4.2, with two adjustments made.
First, we focus explicitly on Autotrace for this experiment because
it yields by far the most bugs out of all the real-world programs.
Second, we use AddressSanitizer (AS) to automatically triage the
crashes uncovered by AFL and QSYM, as is common practice in
real-world bug hunting. This allows us to compare the quality of
Bunkerbuster’s root cause analysis to AS.

Over the course of this experiment, QSYM and AFL found 1
crash identified by AS as integer overflow and 1 out-of-bounds
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Figure 7: Percentage of unique basic blocks discovered using
breadth-first search, depth-first search, and our proposed ex-
ploration techniques. Our techniques outperform the base-
lines across our entire dataset of 15 real-world programs.

read, which we exclude from the results since these are classes
outside the current scope of Bunkerbuster. For clearer presentation,
we translate binary addresses in our figures to source code line
numbers using debug symbols, postmortem. No system had access
to the symbols during the experiment. In our results, AFL and QSYM
found the same set of bugs, so we only present QSYM for brevity.

Results. After 1 week of analysis, Bunkerbuster yields 17 bug
findings. Conversely, QSYM yields 14 bugs after triaging by AS.
Table 3 presents the two sets of reports side-by-side. Bunkerbuster
finds all of the UAFs and overflows identified in the AS reports
along with 3 UAFs never before reported. Upon investigation, we
discover that the new UAFs reside in code branches missed by
QSYM’s exploration. We believe that given more time, QSYMwould
eventually find inputs to reach these branches, whereupon AS
would be able to triage them correctly. However, QSYM did not
accomplish this within the allotted time whereas Bunkerbuster did.

Another interesting observation is that for 4 CVEs, Bunkerbuster
is able to give more precise classifications than AS (bold in Table 3).
In 3 cases, AS reports undefined behavior (UNDEF), meaning that
despite QSYM detecting a crash and providing a concrete input
to AS for analysis, AS still could not decide on a class for the bug.
Conversely, Bunkerbuster correctly identifies the bugs to be UAFs.
In 1 case, AS reports a bad free (BADFREE), meaning that the
address being freed was never allocated, but Bunkerbuster, using
its symbolic constraints, is able to correctly identify that a more
carefully chosen input can turn this bug into a UAF. In summary,
our system finds 3 UAFs missed by QSYM and yields more accurate
classifications than AS in 4 cases.

4.4 Effectiveness of Exploration Techniques
Methodology. To validate whether our proposed exploration tech-

niques enable Bunkerbuster to better search program states while
avoiding path explosion, we compare against two baselines: breadth-
first and depth-first search (BFS, DFS).7 Notice that DFS is the
default exploration technique used by popular symbolic analysis
frameworks [95].

7We include these baselines in the open sourced code repository for reproducibility.
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To conduct the experiment, we randomly pick 1 trace for each
of the real-world programs from our dataset and allow each tech-
nique (BFS, DFS, and ours) to explore states for 1 hour per program.
Once the time limit has expired, we halt Bunkerbuster and count
the number of unique basic blocks discovered by each technique.
Since some target programs are slower to explore than others, we
normalize our results by dividing the counts by the total number of
unique blocks discovered globally, across all evaluated techniques,
yielding a percentage from 0% to 100%.

Results. The results of our experiment are presented in Figure 7.
Across all 15 real-world programs, Bunkerbuster’s exploration tech-
niques outperform BFS and DFS. Specifically, for about half of the
programs, Bunkerbuster’s techniques find all the basic blocks BFS
and DFS find, and more. Bunkerbuster also finds more than double
the number of basic blocks than the baselines in many cases, such
as in Dmitry and MiniFTP.

The biggest contrast occurs in Butteraugli, where BFS and DFS
only find about 2% of the blocks discovered by Bunkerbuster. Upon
investigation, we discover that BFS and DFS both get stuck in libz’s
CRC32 checksumming function. Such functions are notorious for
inducing path explosion [25]. Bunkerbuster’s techniques avoid this
function using heuristics to recognize that the contained code is
unlikely to cause our targeted bug classes (e.g., the contained loops
do not perform stepping writes, Subsection 3.5).

Another stark contrast occurs in MiniFTP, where the baselines
only find about 10% of the blocks Bunkerbuster finds. In this case,
BFS, DFS, and Bunkerbuster all focus on MiniFTP’s function for
loading the settings file, which is expensive to explore because
the code is densely packed with string comparisons, another well-
known source of path explosion. However, whereas BFS and DFS
explore this function naively, yielding lower code coverage and
uncovering no bugs within the allotted time, Bunkerbuster priori-
tizes the contained loops using our described heuristics and finds
EDB-46807 in under 10 seconds.

In summary, the heuristics we propose for Bunkerbuster do
in fact help it explore more code in our evaluated dataset in less
time than BFS or DFS. In many cases, the contrast is significant,
with Bunkerbuster’s exploration techniques discovering more than
double the number of basic blocks within the allotted time.

4.5 Performance & Storage
Methodology. To measure the performance and storage over-

heads of Bunkerbuster, we start with the SPECCPU 2006 benchmark
with a storage quota of 10 GB per end-host. We use the 2006 version
deliberately so our numbers can be directly compared against other
prior full-trace8 PT systems [40, 54]. Since these workloads are
CPU intensive, we consider this to be the worst realistic case for
our system. For another comparison point, we also evaluate Nginx
running PHP with default settings, stressed using ApacheBench
to serve 50,000 HTTP requests for files ranging in size from 100
KB to 100 MB, which we consider to be an I/O bound workload.
Performance overhead is measured with tracing and API snapshots
enabled versus running without the kernel driver installed for the
baseline. Storage is the at-rest size of all collected data. Overheads

8As opposed to systems that use small finite buffers [31, 62].

Table 4: Symbolic Root Cause Verification

CVE / EDB Type # BBs ΔRC L P M
CVE-2004-0597 Ovf 41,625,163 247 Y [3] Y
CVE-2004-1257 Ovf 53,490 6,319 Y - -
CVE-2004-1279 Ovf 67,772 26,216 Y - -
CVE-2004-1288 Ovf 74,723 33,211 Y [4] Y
CVE-2009-2629 Ovf 300,071 28 Y [7] Y
CVE-2009-3896 Ovf 283,157 59 Y [6] Y
CVE-2009-5018 Ovf 90,738 1,848 Y [42] Y
CVE-2017-7938 Ovf 100,186 4,051 Y - -
CVE-2017-9167 Ovf 75,404 1,828 Y - -
CVE-2018-12326 Ovf 291,275 8 Y [2] Y
CVE-2018-12327 Ovf 374,830 122,740 Y [78] Y
CVE-2018-18957 Ovf 65,198 94 Y [1] Y
CVE-2019-14267 Ovf 128,427 83,123 Y [80] Y
EDB-15705 Ovf 260,986 19,322 Y - -
EDB-46807 Ovf 60,849 335 Y - -
CVE-2017-9182 UAF 132,302 296 Y - -
CVE-2017-11403 UAF 2,316,152 38 Y [45] Y
CVE-2017-14103 UAF 2,316,133 38 Y [45] Y
CVE-2017-12858 DF 5,980,255 51 Y [69] Y
CVE-2005-0105 FS 127,209 1 Y [5] Y
CVE-2012-0809 FS 108,442 1 Y [100] Y

are calculated as (𝑃 − 𝐵)/𝐵 where 𝐵 is the baseline metric and 𝑃 is
with Bunkerbuster.

Results. Figure 8 shows the metrics for the SPEC benchmark.
The average tracing overhead is 7.21% with a geometric mean of
3.83%, which is within 1% of prior systems that record full PT traces,
demonstrating that the filtering and snapshot steps performed by
Bunkerbuster incur negligible additional overhead. Similar to prior
work, the storage requirement is also large for some cases, averag-
ing 1,348 MB/min, however all tests completed in under 1 minute,
so the average final size is 110 MB per workload. We believe this
is tolerable given that the data is forwarded to a storage server
and with a 10 GB quota per end-host, dozens of executions can be
stored at a time for analysis. Recall that this storage is temporary.
Once a trace is analyzed, it can be discarded to free space. The band-
width required to transfer traces currently makes Bunkerbuster
better suited to enterprise LANs/WANs as opposed to end-hosts
distributed across the internet.

Figure 9 shows the results for our Nginx benchmark. Here the
average performance overhead is only 2% with 1.6 MB of data
generated, on average, per HTTP request. With a quota of 10 GB,
traces corresponding to thousands of requests can be buffered at a
time. Requested file size had little impact on our results.

4.6 Verifying the Root Cause Analysis
Methodology. We trace proof of compromise exploits targeting

overflow, UAF, DF, and FS vulnerabilities, for the same dataset used
in the original symbolic root cause analysis work [106]. We then
analyze the recorded traces with Bunkerbuster. In each case, we
verified that our detection modules pinpoint the concise root cause
of the vulnerability, in accordance with the prior work’s results.

Results. The results of our evaluation are summarized in Table 4,
which shows the number of basic blocks in each trace, the number

Session 2A: Fuzzing and Bug Finding  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

330

Isr
ael

-U
S BIR

D Fou
nd

ati
on



437.le
sli

e3
d

435.gromac
s

473.as
tar

445.gobmk

450.so
plex

436.ca
ctu

sA
DM

483.xala
ncb

mk

462.lib
quan

tum

459.G
em

sF
DTD

447.dea
lII

453.povray

454.ca
lcu

lix

403.gcc

464.h264ref

481.w
rf

471.omnetp
p

434.ze
usm

p

456.hmmer

482.sp
hinx3

400.perl
ben

ch

458.sj
en

g

465.to
nto

410.bwav
es

401.bzip
2

429.m
cf

416.gam
ess

470.lb
m

444.nam
d

433.m
ilc

Avera
ge

Geo
metr

ic 
M

ea
n

0.00%

20.00%

0

5000
Performance (%) Storage (MB/min)

Figure 8: Performance and storage for tracing the SPECCPU 2006 benchmark. The average overhead is 7.21% and the geometric
mean is 3.83%. The average trace size is 1,348 MB/min and the geometric mean is 602 MB/min.
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Figure 9: Overheads for tracing Nginx. The performance
overhead is under 2% and the maximum storage is 1.6 MB
per request.

of blocks between where the bug was detected and its determined
root cause, whether the root cause was correctly located, whether a
patch exists, and if so, whether the recommended constraints match
the official patch. In total, 21 bugs were evaluated. As the table
shows, Bunkerbuster’s detection modules are able to accurately
detect and localize all 21 of the tested exploits, even when traces
are over 1,000,000 basic blocks long and contain bugs that do not
manifest into an observable corruption until over 100,000 blocks
from the root cause. This gives us confidence that our symbolic
root cause analysis is correctly designed, despite now working over
partial traces in multi-path exploration.

5 LIMITATIONS & THREATS TO VALIDITY
Scope of Target Programs. Our current prototype is evaluated

on benign, unobfuscated, Linux binaries. Further work is required
to handle malware, packing, and virtualization, which fall outside
the intended scope for this system. The current prototype also
skips dynamically generated code (e.g., JIT compilation), however
our driver is capable of recording and decoding it. Although our
prototype focuses on Linux, the analysis is implemented for VEX IR,
which is architecture independent and can be ported to other OSes
that support PT, assuming the necessary system calls are modeled.

Scope of Detected Bug Classes. Bunkerbuster currently supports
detection of overflow, UAF, DF, and FS bugs, but these are not
the only types of memory corruption that can occur in programs
written in unsafe languages like C/C++. However, all approaches
to bug detection have class limitations. For example, the systems
we compare against (AFL, QSYM) rely on crashes as indicators
of buggy behavior, and consequently cannot detect non-crashing
bugs, such as ones caught by exception handlers. Conversely, it is
possible for Bunkerbuster to miss bugs that reside in program states
that it cannot reach within the allotted time. It is also possible for
Bunkerbuster to miss overflows that cannot corrupt the program
counter. Detecting UAF, DF, and FS bugs relies on knowing which
functions manage dynamic memory and accept format specifier
strings in advance. The search strategies proposed in Section 3

are used only to prioritize certain paths and therefore do not limit
Bunkerbuster’s total detection capabilities.

Reachability of Detected Bugs. As explained in Subsection 3.2,
bugs found using snapshots taken from the program’s entry point
are inherently reachable via input arguments. Conversely, bugs
found via API snapshots may not be reachable via the analyzed
program, but may be reachable by other programs that also import
the same library. In such cases, we reported the bugs to the library
maintainers, who decided to patch in most cases.

Severity of Detected Bugs. Our prototype does not currently ana-
lyze the exploitability of uncovered bugs, however our approach
is compatible with automatic exploit generation techniques [11].
Our system has found confirmed 0-day RCE vulnerabilities, demon-
strating the security relevance of our techniques.

In one case, Bunkerbuster found a bug that the developers de-
cided not to patch, labeled “Will Not Fix” in Table 1. In this lone
case, the develops acknowledged the bug’s existence, but decided
that the performance cost of fixing it was too high, and instead
cautioned downstream developers to take care in validating the
inputs passed to the relevant library API.

6 PRIVACY & LEGAL CONSIDERATIONS
In the evaluation, we setup an end-host and an analysis server as
separate machines to emphasize the decoupled nature of Bunker-
buster’s design. However, it is important to point out that analyzing
control flow reveals some information about the values of data vari-
ables due to program control dependencies.

The threat of control flow leaking sensitive data has been well-
studied by the side-channel research community [19], and some
sensitive applications (e.g., cryptography) use hardened code to
mitigate, however leakage in the context of traces recorded by PT
has not been formally studied, to the best of our knowledge. Conse-
quently, we envision the end-hosts and analysis servers belonging
to the same or trusted parties where leakage is not an issue. How-
ever, it is possible for these machines to belong to different parties,
raising privacy and legal concerns (e.g., Europe’s General Data Pro-
tection Regulation, a.k.a., GDPR). Further research is required to
fully understand this risk, which is outside the scope of this work.
Notice however that there exists prior work on sanitizing artifacts
like crash dumps [35], some large corporations may already be
recording PT traces from end-users [41], and once the analysis is
distilled into a root cause report, its privacy risk diminishes, as can
be seen in the example report shown in the Appendix (Figure 10).
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7 RELATEDWORK
Symbolic Analysis & Fuzzing. Early work in symbolic analysis

proposed treating inputs as symbols to aid in testing code [18,
29, 64]. Over time, the applications of symbolic analysis ex-
panded to include replaying protocols [75], vulnerability detec-
tion [44, 74, 88, 98], side-channel analysis [19], firmware analy-
sis [94], verifying the correctness of cryptographic methods [24, 25],
emulator testing [72], and automatic binary patching [77, 93]. Our
work distinguishes itself from prior techniques like loop-extended
symbolic execution (LESE) [88] in how it relies on novel uses of con-
crete data rather than a different type of symbolic lattice or grammar
to achieve scalability. Whereas LESE has been evaluated on small
CLI programs like Sendmail to uncover overflows, Bunkerbuster
handles large plugin-based GUI tools like GIMP and also finds in-
stances of orthogonal bug classes like UAF, DF, and FS. LESE cannot
be extended to discover these classes because exploring loops is
orthogonal to their life cycles.

An alternative approach to bug hunting is fuzzing [23, 36, 37, 43,
52, 56, 72, 85, 86, 110], which instead enumerates possible inputs
to a program or API and checks for crashes as an indicator of
buggy behavior. As mentioned in Section 1, some of the challenges
with fuzzing are acquiring good seed inputs, reaching deep APIs,
and identifying the nature of the bug when a crash does occur,
typically using additional tools like AS. Although Bunkerbuster
does not rely on fuzzing, it addresses the same usability challenges.
While we consider the ability to collect traces from production
systems with minor overhead to be a key novelty of our design,
Bunkerbuster is technically capable of collecting traces from fuzzers
as an alternative, should the user of our system not have access to
production systems to monitor.

Many practical systems focus on concolic execution, whereby real
executions are used to guide symbolic analysis without getting stuck
in loops or string parsing [61, 90, 95]. Although Bunkerbuster also
explores nearby paths with guidance from concrete data to discover
vulnerabilities [22], our design takes a unique approach to avoiding
path explosion. Namely, rather than turning to hybrid techniques
that incorporate fuzzing [17, 27, 99, 111], source code [48], or prior
crashes [82] to find more inputs (that can still lead to path explosion
during symbolic analysis), we propose ways to leverage control
flow traces. Bunkerbuster’s symbolic states enable it to detect a
wide range of vulnerabilities (overflows, UAF, DF, FS) whereas prior
taint-based tracing approaches are limited to a specific class, such
as heap overflow [59]. Also, whereas many prior concolic systems
have to operate in lockstep with the concrete environment [28,
59], Bunkerbuster’s tracing is completely decoupled from analysis,
granting low overhead.

Automatic Harness Generation. In recent years, researchers have
recognized the inability of fuzzers to handle large complex pro-
grams that are slow to initialize or require GUI interaction. Several
proposals have emerged to automatically generate fuzzer harnesses
using source code [12, 55]. Unfortunately, these solutions still leave
COTS and legacy binaries unaddressed. In response, a system called
Winnie [60] was proposed, which uses execution traces (rather than
source code) to automatically generate harnesses forWindows bina-
ries. At first glance, this appears comparable to how Bunkerbuster
selectively symbolizes snapshots, however 5% ofWinnie’s harnesses

had to be manually fixed to account for complex structures and
callbacks while a large portion of the remaining 95% required minor
manual tweaks. Bunkerbuster does not exhibit these shortcomings.

Root Cause Analysis. One of the oldest forms of root cause anal-
ysis is delta debugging [113], whereby comparisons are made be-
tween concrete program states for successful and failing inputs to
pinpoint differences. Unfortunately, this requires having an ample
number of test inputs in both classes to be effective. Alternatively,
program slicing [87] can use tainting to identify the instructions
that contribute to a failing instruction, even for a lone case, however
the result can be hard to understand, with flagged instructions being
sparsely scattered throughout the program. Conversely, Bunker-
buster’s root cause analysis leverages neighboring symbolic states,
performing comparisons to pinpoint a concise root cause (unlike
slicing), using symbolic constraints instead of concrete variables
(unlike delta debugging), requiring only a single trace. Another
approach to root cause analysis is failure sketching, however this is
typically applied to bug classes like race conditions [63], or higher
level issues in websites [8], insecure use of keys [68], and other
domains outside Bunkerbuster’s scope [110].

It is also possible to produce root cause explanations by triaging
the many crashes produced by tools like fuzzers into buckets of
related cases. Bucketing can be done symbolically [81], semantically
with program transformations [101], or statistically [16]. These lines
of research are spiritual successors to delta debugging and carry
similar limitations. Namely, they can only analyze bugs that result
in a crash and require multiple crashing and non-crashing inputs
to yield good explanations.

8 CONCLUSION
We propose Bunkerbuster, a system for automated data-driven bug
hunting of memory corruption bugs using symbolic root cause
analysis. Our design leverages PT and sparse memory snapshots to
symbolically reconstruct execution traces and explore nearby paths
to uncover overflow, UAF, DF, and FS vulnerabilities. We implement
our prototype and evaluate it on 15 real-world Linux programs,
where it finds 39 bugs, 8 of which are never before reported. 3
have been independently verified by MITRE, issued CVE IDs, and
patched by developers using Bunkerbuster’s reports, validating our
prototype’s usefulness. Bunkerbuster finds 8 bugs missed by AFL
and QSYM in our target programs and correctly classifies 4 more
bugs that AS mislabeled. Bunkerbuster achieves this with 7.21%
performance overhead and reasonable storage requirements.
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Figure 10: Example root cause report for CVE-2018-12326.

Trace : openhos t +0 x2a4 in ntpq ( 0 xbae4 )
Trace : openhos t +0 x218 in ntpq ( 0 xba58 )
Trace : openhos t +0 x3bc in ntpq ( 0 xbb f c )
Trace : _ _ s t a c k _ c h k _ f a i l +0 x0
We' ve t r i g g e r e d a bug
Ana lyz ing e x i t a t openhos t +0 x218
Blaming : openhost +0 x2dd in ntpq ( 0 xbb1d )
Recommendation : Add [ argv [ 2 3 2 ] == ' ] ' ] t o

<CFGENode openhost +0 x2d8 0 x55857a27db18 [5] >
V u l n e r a b i l i t y Hooks D e t a i l s :

Hash : 1 c f a d
Addr : 0 x55857b000028 => _ _ s t a c k _ c h k _ f a i l +0 x0

0 x55857a27dc01 => openhost +0 x3c1

Table 5: Manually Verified APIs for Binary-Only Recovery

Library # Functions # Variables # Pointers Match?
libpng 71 183 117 Yes
libz 11 14 2 Yes
glib 125 283 202 Yes
libc 22 29 19 Yes
libbabl 70 163 104 Yes
libx11 5 247 137 Yes
libjpeg-turbo 25 15 12 Yes
libcyrus-sasl 1 3 1 Yes
libpoppler 3 7 4 Yes
libgegl 33 52 44 Yes
libghostpdl 29 47 40 Yes
libgimp 36 50 48 Yes
libgtk 21 41 26 Yes
libkeyutils 4 8 6 Yes
libidn2 1 2 1 Yes
libXpm 5 18 5 Yes
libopenjpeg 22 40 24 Yes
Total: 484 1,202 792
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Algorithm 1: Retrieve all memory reads and writes for a
VEX IRSB 𝐼 , using successor state 𝑆 , producing 𝐴.
1 𝐴,𝑇 ← ∅
2 foreach 𝑖 ∈ 𝐼 do
3 if Type(i) = Store then
4 if Type(i.addr) = Const then

// Write to constant address

5 𝐴← 𝐴 ∪ 𝑖 .𝑎𝑑𝑑𝑟
6 end
7 else

// Write to variable address

8 𝑇 ← 𝑇 ∪ 𝑖 .𝑎𝑑𝑑𝑟
9 end

10 end
11 if Type(i) = WrTmp ∧ Type(i.data) = Load then
12 if Type(i.data.addr) = Const then

// Read from constant address

13 𝐴← 𝐴 ∪ 𝑖 .𝑑𝑎𝑡𝑎.𝑎𝑑𝑑𝑟
14 end
15 else

// Read from variable address

16 𝑇 ← 𝑇 ∪ 𝑖 .𝑑𝑎𝑡𝑎.𝑎𝑑𝑑𝑟
17 end
18 end
19 end

// Use S to avoid recomputing ASTs

20 foreach 𝑡 ∈ 𝑇 do
21 𝐴← 𝐴∪ EvalTmp(S,t)
22 end

Algorithm 2: Detect stepping behavior in a sequence of
states 𝑆 , iterating a loop. IsTmpStore is true when the VEX
IRSB instruction is a WrTmp and its expression is Store.
1 𝑅 ← 𝐹𝑎𝑙𝑠𝑒

2 𝐼 ← ∅
3 foreach 𝑠 ∈ 𝑆 do
4 foreach 𝑖 ∈ 𝑠.𝑖𝑟𝑠𝑏.𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do
5 if IsTmpStore(i) then
6 𝐼 [𝑖 .𝑎𝑑𝑑𝑟 ] ← 𝐼 [𝑖 .𝑎𝑑𝑑𝑟 ] ∪ 𝑖 .𝑎𝑑𝑑𝑟 .𝑡𝑚𝑝

7 end
8 end
9 end

10 foreach 𝑎 ∈ 𝐼 do
11 𝑙 ← 𝐼 [𝑎] .𝑠𝑖𝑧𝑒
12 if 𝑙 > 1 then
13 if 𝐼 [𝑎] [0] ≤ 𝐼 [𝑎] [1] ≤ ... ≤ 𝐼 [𝑎] [𝑙 ] then
14 𝑅 ← 𝑇𝑟𝑢𝑒

15 end
16 if 𝐼 [𝑎] [0] ≥ 𝐼 [𝑎] [1] ≥ ... ≥ 𝐼 [𝑎] [𝑙 ] then
17 𝑅 ← 𝑇𝑟𝑢𝑒

18 end
19 end
20 end

Algorithm 3: Tainting algorithm to obtain the registers
and addresses used to calculate a VEX IR temporary vari-
able.
1 Input: VEX IR statements 𝑆 starting from last executed.
2 Tmp 𝑛 to taint initially.
Result: Addresses 𝐴 and registers 𝑅 used to calculate 𝑛.

3 𝐴,𝑅 ← ∅
4 𝑇 ← {𝑛}
5 foreach 𝑠 in 𝑆 do
6 if Type(s) = Put and Type(s.data) = RdTmp then
7 if 𝑠.𝑑𝑎𝑡𝑎.𝑡𝑚𝑝 ∈ 𝑇 then
8 𝑅 ← 𝑅 ∪ {𝑠.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 }
9 end

10 end
11 if Type(s) = WrTmp and 𝑠.𝑡𝑚𝑝 ∈ 𝑇 then
12 foreach 𝑎 in 𝑠.𝑑𝑎𝑡𝑎.𝑎𝑟𝑔𝑠 do
13 if Type(a) = Get then
14 𝑅 ← 𝑅 ∪ {𝑎.𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 }
15 end
16 if Type(a) = RdTmp then
17 𝑇 ← 𝑇 ∪ {𝑎.𝑡𝑚𝑝 }
18 end
19 if Type(a) = Load then
20 𝐴← 𝐴 ∪ EvalTmp(a.address)
21 end
22 end
23 end
24 end
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