

Enhancing Cybersecurity of Grid Operations

Lalitha Sankar Associate Professor Arizona State University

28 September 2022

Task 5: Generate event-mimicking attacks Task 8: Detect event-mimicking attacks Commercialization: Evaluate attacks on Nexant's (Resource Innovations) EMS Platform

Task 5: Recap

Challenge: Adding white noise or some arbitrary mode is not sufficient Work in progress:

- Extend existing binary classifier to multi-class classifier to include attacks
- Identify the key set of features that can change normative data to mimic an event
- Integrate new synthesized attacks to the existing database

• Existing robust detectors of static data

81.97% confidence

"papillon dog" 99.56% confidence

Power system data is dynamic?

• Existing robust detectors of static data

"panda"

81.97% confidence

+ 0.01 ×

"papillon dog" 99.56% confidence **Objective**: Design <u>modular detectors</u> <u>capable of detecting anomalies</u> via PMU measurements

Our Method: Online ML detector that exploits **event features** to:

• compare *features* of true events against fake events

Power system data is dynamic?

• Existing robust detectors of static data

81.97% confidence

"papillon dog" 99.56% confidence

Power system data is dynamic?

Objective: Design <u>modular detectors</u> <u>capable of detecting anomalies</u> via PMU measurements

Our Method: Online ML detector that exploits **event features** to:

- compare *features* of true events against fake events
- Incorporate (*physics-based*) *priors* to make detectors robust

• Existing robust detectors of static data

"panda" 81.97% confidence

"papillon dog" 99.56% confidence

Power system data is dynamic?

Objective: Design <u>modular detectors</u> <u>capable of detecting anomalies</u> via PMU measurements

Our Method: Online ML detector that exploits **event features** to:

- compare *features* of true events against fake events
- Incorporate (*physics-based*) *priors* to make detectors robust
- Include spatio-temporal characteristics (e.g., frequency, event source) for distinguishability

Task 8	Status (Work in progress)	Work to be done
 Design robust detectors and test it against attacks Explore commercialization 	 Detector design in progress (for events) Testing its efficacy to attacks (in progress) 	 Evaluate detectors from Task 5 with new attacks (Q3) Incorporate prior knowledge: (i) Use prior (historical) data to identify if event pattern is meaningful (e.g., k- NN on event features) (Q5) (ii) Design a risk predictor method for operators. (Q7) Work with Resource Innovations on Commercialization

Commercialization

Prior OT Software Incorporate (*physics-based*) *priors* to make detectors robust

[1] C. Zhigang, O. Kosut, and L. Sankar. "Detecting load redistribution attacks via support vector models." *IET Smart Grid*, 2020
 [2] A. Pinceti, L. Sankar, and O. Kosut. "Detection and Localization of Load Redistribution Attacks" *J. of Modern Power Systems and Clean Energy*, 2021

Task 5 (a): Learn Event Signatures from Measurements

PMU

Fault

