‘955?

Tr"[*
Enhancing Cybersecurity of Grid
Operations

Lalitha Sankar
Associate Professor
Arizona State University

ARIZONA STATE
28 September 2022 UNIVERSITY



i oo B
Enhancing Cybersecurity of Grid Operations b S

Task 5: Generate event-mimicking attacks\/
Task 8: Detect event-mimicking attacks

Commercialization: Evaluate attacks on Nexant’s\/
(Resource Innovations) EMS Platform ‘




Task 5: Event-mimicking Attacks and Countermeasures

* Modern grid with renewables is more stochastic in operations and requires real-
time monitoring to detect/identify real events (oscillations/outages) and attacks.

 ML-based detectors can be easily evaded by attacks that mimic events, ultimately,
causing significant damage on grid operations.

Normal Attack
behavior behavior

Successful mimicry
attacks hard to launch

mimicry attack: a careful cyberattack on data that throws off ML detector

Source: https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-examples-12f2283e06a1



Task 5: Mimicking Attacks in IT Systems

A practical mimicry attack against powerful system-call
monitors

Authors: Chetan Parampalli, R. Sekar, Rob Johnson Authors Info & Claims

ASIACCS '08: Proceedings of the 2008 ACM symposium on Information, computer and communications security « March

allowed
traces

Mimicry attacks on host-based intrusion detection
systems

Authors: David Wagner, Paolo Soto Authors Info & Claims

CCS 'o2: Proceedings of the 9th ACM conference on Computer and communications security =« November 2002 = Pages

255—264 « https://doi-org.ezproxyi.lib.asu.edu/10.1145/586110.586145

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 1, JANUARY 2015 139

Fool Me If You Can: Mimicking Attacks
and Anti-Attacks in Cyberspace

Operating System

Shui Yu, Senior Member, IEEE, Song Guo, Senior Member, IEEE, and Ivan Stojmenovic, Fellow, IEEE

attacks target software
internal to a computer
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Source: https://towardsdatascience.com/will-my-machine-learning-be-attacked-6295707625d8
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....attackers are like electricity: they Data is a potentially feasible pathway for attacks
But for mimicking event attacks, need to explore:

chose the path of least resistance.....
- how to tamper data?

- how many PMUs to tamper?
- how long to tamper?

Source: https://towardsdatascience.com/will-my-machine-learning-be-attacked-6295707625d8



Task 5 (a): Learn Event Signatures from Measurements = R

« Atypical ML-based attack detector maps “event signatures” into “feature space”

« Features are later used to classify events (e.g., line trip or generation loss)

____ Step1: Feature Extracton ______ Step 2: Feature Engincering Step 3: Classification _ _
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[3] N. Tahipourbazargani et.al (2022) A Machine learning framework for event identification via modal analysis of PMU data, under review, IEEE PES.



Task 5 (a): Learn Event Signatures from Measurements

Step 3: Classification

PMU #31data stream
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Task 5 (a): Learn Event Signatures from Measurements = == —
[ PMU channels ;
. = true measurement
= oy o | Emmmmm————— , | -----attacked measurement A
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Yes! By identifying key event features that are easy
to synthesize by changing measurements!
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Task 5 (a): Learn Event Signatures from Measurements

PMU channels
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Yes! By identifying key event features that are easy
to synthesize by changing measurements!



Task 5 (a): Learn Event Signatures from Measurements = -

l PMU channels

. = true measurement
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Challenge: Adding white noise or some arbitrary mode is not sufficient

Work in progress:

Extend existing binary classifier to multi-class classifier to include attacks
|ldentify the key set of features that can change normative data to mimic an event
Integrate new synthesized attacks to the existing database



Task 5 (b): Interpretable Models for Attack Generation

« Counterfactual machine learning models:

(

y l Output ¥V
_: “ Deep neural network f ': Change to
. ‘ * | outcome

. H o Desired output ¥’
» i i .'”.-_.“:ﬁ “’-2"' 2 e ——— E :
A | perturbed input X' u” :":l”HJ_LJ = . Class 9 A
- Deep neural network f

Framework of counterfactual explanation*

Counterfactual models for attacks on power system attacks:

« Determine minimal set of features with large attack impact
» Features should be realizable by perturbing measurements

Counterfactual

explanation result

Original Image (7)

/

Perturbed Image (9)

7

*[Online] Available: https://da2so.qithub.io/2020-09-14-Counterfactual Explanation_Based on_Gradual Construction for Deep Networks/

[2] A. Pinceti, O. Kosut and L. Sankar, "Data-Driven Generation of Synthetic Load Datasets Preserving Spatio-Temporal Features," PESGM-2019, pp. 1-5,

Interpretation

Pre-trained
model think

7

the red regions are
discriminative to
classify the data
between ‘7" and ‘9’
classes.


https://da2so.github.io/2020-09-14-Counterfactual_Explanation_Based_on_Gradual_Construction_for_Deep_Networks/

s R
Summary of Task 5 = s v
e Task 5(a): mimic attacks ¢ Extend Binary to multi- ¢ Fully automated mimicking
by tampering data class classifier attacks using data alone (e.g.,
* Task 5(b): interpretable <« Evaluate the ML detector = GAN based attacks) (Q2)
models for attack performance for attacks
generation realized by adding noise. ¢ Integrate new synthesized
attacks to the database. (Q10-
Q12)

* Work with Resource
Innovations on
Commercialization



Commercialization Task L

Step 1: Feature Extraction e © Nexanr cid 3«
R= Step 2: Feature Engineering Step 3: Classification CIEI oo
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In collaboration with industry partner Resource Innovations (John Dirkman):

Line Generation
Trip Loss
\ /

* Implement end-to-end python package to synthesize mimicking attacks
« Overlay the python package on Nexant Grid 360
« Evaluate attacks for enhanced visualization



Task 5 (a): Learn Event Signatures from Measurements
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W. Li, M. Wang and J. H. Chow, "Real-Time Event Identification
Through Low-Dimensional Subspace Characterization of
High-Dimensional Synchrophasor Data," in IEEE Transactions
on Power Systems, vol. 33, no. 5, pp. 4937-4947, Sept. 2018.



Back up slides



PMU #31data stream

0.2

-0.2

-0.4

-0.6

-0.8

Construct the feature vector

¢'; € RY

of event j, ¢p; € R?

of Selection ¢
R4 (filter
method)

/4 Classifier

A
.\

/
/

W\ W
A ,{'\'\ AN

ANy
]

W
A

\
|
|
|
|
|
|

Feature I
|
|
|
|
I
|
|

Whered' < d :

Hi Mode:-Amp:1.9354-freq:0.77405-alfa: -5.8048

0.1 I

02

0.3 M|

I Sample 1
I 1:---n. N |
1 r
| PMU 1] !
l | MSMPM :
I 'pmu o I
| L
|
I I
! Other |
I measurements I
I ImT T T T T T T T s T s s s
l—— N , p angular frequencies ::
e e
| T ~ e, |
| I i p damping factors El
SV IE, I o mmm e o]
| o ! p X m residues n
| frequency E ittt |
- » MSMPM: Multi-signal matrix pencil method ,
Signal Reconstruction Using MPM - Window:#1 03—~
s Original |
- = MPM,, 1
— 02
i |
01 ‘
| o ol
|
|
04
i
K
2
03 : .
o S0 00
50 100 150 200 250

Sample #

L 04 L L L
150 200 o] 50 100 150

200

s

001t

001 F

s

Generation
Loss

Mode: -Amp:0.014165-freq:0 5395-alfa:-0.13945

A

00

150

200



Task 5 (a): Learn Event Signatures from Measurements ~ - -

« Can we identify physically realizable attacks (e.g., event-mimicking)?

Step 1: Mode Decomposition Step 2: Feature Engineering Step 3: Classification
————————————————————— o - ————— .
{ Sample N / . : d | ‘ € R4 \
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Yes! By identifying key event features that are easy
to synthesize by changing measurements!

[3] N. Tahipourbazargani et.al (2022) A Machine learning framework for event identification via modal analysis of PMU data, under review, IEEE PES.



Task 5 (b): Interpretable Models for Attack Generation TT Tl

« Counterfactual machine learning models: Counterfactual

explanation result

Interpretation

Pre-trained
model think
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Framework of counterfactual explanation* classes.

Counterfactual models for attacks on power system attacks:
« Determine minimal set of features with large attack impact
« Features should be realizable by perturbing measurements

*[Online] Available: https://da2so.qgithub.io/2020-09-14-Counterfactual Explanation Based on_Gradual Construction for Deep Networks/

[2] A. Pinceti, O. Kosut and L. Sankar, "Data-Driven Generation of Synthetic Load Datasets Preserving Spatio-Temporal Features," PESGM-2019, pp. 1-5,


https://da2so.github.io/2020-09-14-Counterfactual_Explanation_Based_on_Gradual_Construction_for_Deep_Networks/

Ensuring Cybersecurity of Grid Operations P

Task 5 (attack generation) * synthesize “intelligent” attacks completed feature extraction
that mimic “events” by tampering ¢ analyzing features realizable by
measurements. altering measurements.

Task 8 (attack detection) * develop ML and data-driven
“robust” detectors that detect

intelligent attacks.

In two quarters.

Commercialization * seamlessly integrate ML detector pilot study: test our prior load-
to Nexant Grid360 tool. altering attacks and detectors
using "smart-meter” data.
* towards product: in four
quarters.



Commercialization — Detection to Anomaly e
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Data
Measurements 1) Load classification
2) Event/attack classification
3) Attack/feature scores

Resource Innovations: Load Anomaly Visualization

ML based event/ Attack Detector

Intelligent and interpretable
attack/event detector




* Things to argue for in terms of attacks:
* Where can an attack happen?
e Within the EMS control center?
* Replay attack at a concentrator/aggregator?

 We know that at least 3 PMUs have to be attacked tohave any effect
(reference: Gyorgy Dan, ...co-authors) (Nima)

* Are we changing load data? Or measurements that affect load data?

* They get direct load measurements (as injections)
* Attack: how many load measurements should we change and how can it be realistic?
* Depends on application — where data is coming from. Hope to get this info from John

* Are there other mechanisms to verify if the load measurements have changed? To ask
John



Step 1: Mode Decomposition

- AN
Sample
1 e m N
.
PMU 1|
MSMPM
PMU
L
Other
measurements

_ ]

________________________
e

frequency
» MSMPM: Multi-signal matrix pencil method

e s o o e o Em Em oy,

R

Step 2: Feature Engineering
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