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 Modern grid with renewables is more stochastic in operations and requires real-
time monitoring to detect/identify real events (oscillations/outages) and attacks. 

 ML-based detectors can be easily evaded by attacks that mimic events, ultimately, 
causing significant damage on grid operations. 

Source: https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-examples-12f2283e06a1

mimicry attack: a careful cyberattack on data that throws off ML detector

hard to launch

Event-mimicking Attacks and Countermeasures 



Source: https://towardsdatascience.com/will-my-machine-learning-be-attacked-6295707625d8

PMU 
data

ML algorithm

difficult
easy

easy to tamper PMU ; but for mimicking event attacks  
- how to tamper data? 
- how many PMUS to tamper? 
- how long to tamper?

Where can Attackers target in OT Systems?

extract and exploit 
signal physics (modes)



Task 5 (a): Learn Event Signatures from Measurements

H. Li, et. al, "An Unsupervised Learning Framework for Event Detection, Type 
Identification and Localization Using PMUs Without Any Historical Labels," 
PES GM 2019

W. Li, et. al., "Real-Time Event Identification Through Low-Dimensional Subspace 
Characterization of High-Dimensional Synchrophasor Data," IEEE TPS, vol. 33, no. 5, 
pp. 4937-4947, Sept. 2018.

Prior work neglects the physics (e.g., modes, residues, frequency) encoded in PMU data

Unsupervised learning for event detection Dictionary based learning for event identification 



Task 5 (a): Learn Event Signatures from Measurements

 Characterizing events based on a set of physically interpretable features 
 Finding the most informative sparse set of features
 Learning a set of robust classification models to identify the events



Task 5 (a): Learn Event Signatures from Measurements
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Yes! By identifying key event features that are easy 
to synthesize by changing measurements!

Task 5 (a): Learn Event Signatures from Measurements

[3] N. Tahipourbazargani et.al (2022) A Machine learning framework for event identification via modal analysis of PMU data, under review, IEEE PES.

PMU channels

Positive sequence 
voltage magnitude

Positive sequence 
voltage angle
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current magnitude

Positive sequence 
current angle
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Line Trip
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Can we identify physically realizable 

attacks (e.g., event-mimicking) ?
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Task 5 (a): Threat Model
 (start with) White Box Attack Model: Attacker has full information of the event classifier

 Untampered Features: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘

𝑖𝑖 }
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# of features: 𝑝𝑝′ < 𝑝𝑝
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Task 5 (a): Threat Model
 Start with White Box Attack Model: Attacker has full information of the event classifier

 Untampered Features: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘

𝑖𝑖 }

 Which features can be tampered for maximal impact / misclassification? 
 not your usual additive false data injection
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Task 5 (a): Threat Model
 Start with White Box Attack Model: Attacker has full information of the event classifier

 Untampered Features: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘

𝑖𝑖 }

 Which features can be tampered for maximal impact / misclassification?

 First attack effort: tamper with residual amplitudes ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘

𝑖𝑖 }
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Task 5 (a): Tampering Residual Magnitudes
 Tampering technique: add 

20 to all first mode residues
for both Vm and F channels

 Illustration shown here for 
Generation Loss event

 Similar results for Line Trip 
events can be shown

 AUC/ROC curves show that 
misclassification is possible

 However, time-series signal 
has too large an amplitude 
and could potentially be 
detected as anomalous 
(simple energy-based 
anomaly detection could 
work)



Task 5 (a): Threat Model
 Start with White Box Attack Model: Attacker has full information of the event classifier

 Untampered Features: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
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 Which features can be tampered for maximal impact / misclassification?

 2nd attack effort: tamper residual angles: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘
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Task 5 (a): Consequences of Tampering Residual Angles
 Tamper residual angle of the first three PMUs with highest residues
 Angles modified by adding 100π

 succeeds in spoofing the classifier 
 reconstructed signal indistinguishable from original

 However, attacker needs to tamper classification algorithm to spoof features directly



Task 5 (a): Threat Model
 White Box Attack Model: Attacker has full information of the event classifier

 Untampered Features: ℱch = {ω𝑘𝑘}, {σ𝑘𝑘}, { 𝑅𝑅𝑘𝑘
𝑖𝑖 }, {θ𝑘𝑘

𝑖𝑖 }

 Initial tests: tamper residual amplitudes and angles – either need large values or more 
access

Attack avenues being explored:
 Can we intelligently tamper modes {ω𝑘𝑘}, {σ𝑘𝑘}: key signatures of an event? 

 How can topology information be utilized to identify most susceptible PMUs?

 Attacks are expensive and identifying a small set of features and PMUs to attack is crucial



Task 5 (a): Next Steps
 System largely operate in normative conditions
 However, when events occur, they can be of more than two types
 A natural extension to multi-event classification is to include a third normative class (non-

event class)
 Are attacks easier (even white box ones) in the multi-class setting? We conjecture: yes
 Key challenge: designing intelligent attacks without resorting to brute force – requires 

exploiting physics of the data without breaking physical laws

Classifier

Line Trip

Normative

Generation 
Loss



 Industry Collaboration: 
Resource Innovations, INC 
(RII)

 Attack design on RII’s 
Grid360 power flow 
simulator

 IEEE118 sub-transmission 
network model is used

 Loads modified on network 
sub-region such that net 
change is zero

 Goal: cause line overflow 
undetectable by 
conventional state 
estimators

Task 5 (a): Collaboration with RII



 Industry Collaboration: Resource Innovations, INC
 Exploring Grid360’s capabilities to understand where our research fits in
 Understanding the intelligence of the state estimator by varying loads 

measurements and checking for bad data flags
 Working on RI team on multiple bugs that were discovered 
 In the process of being fixed – weekly on-going meetings with RI

Task 5 (a): From Lab to Practice

SE is able to detect a 
load change of 10 MW

SE failed to detect a 
load change of 1 MW



 Evaluate efficacy of load attacks on RII’s 
Energy Management System platform

 Use SCADA data and simulate on Grid 360 
software

 Can their conventional state estimator detect 
an attack?

 Counter measures: use sophisticated 
machine learning techniques to improve 
state estimation under attacks 
 Flag anomalous loads that results from 

false measurements injected
 Work closely with RII as they test our robust 

EMS algorithms (e.g., bad data detector) 
towards commercialization
 Key idea: use tomes of history data+ML

Task 5 (a): Commercialization by RII



Task 5 (a): Future directions

• A Deep Learning framework for attacks
• Learn generative model of corrupt PMU data
• Utilize knowledge of feature extraction process and physics of signal 
• Adversarial training of generator: detector spoofed into misidentifying events

Feature 
Extraction 

(Modal 
Analysis)

Deep Neural 
Network

Physics-based 
constraints

Feature 
Extraction 

(Modal 
Analysis)

Event Detector

Generative distribution 
for corrupt PMU data

Event is 
misidentified

Generator

Discriminator

PMU 
Data

Corrupt PMU data



Summary of Work for Q3

Details Status

Task 5 (attack generation) • Synthesize “intelligent” attacks 
that mimic “events” by 
Tampering measurements.

• Completed feature extraction
• Analyzing features realizable by 

altering measurements. 

Task 8 (attack detection) • develop ML and data-driven 
“robust” detectors that detect 
intelligent attacks. 

• In two quarters. 

Industry Collaboration • Seamlessly integrate ML detector 
to Nexant Grid360 tool. 

• Pilot study: test our prior load-
altering attacks and detectors 
using ”smart-meter” data. 

• Towards product: in four 
quarters.
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