Event-mimicking Attacks and Countermeasures =y Tﬂ”" .

Task 5: Generate event-mimicking attacks

Task 5(a): mimic modal features of PMU data
Task 5(b): From lab to practice (Nexant/RRI)

Task 8: Detect event-mimicking attacks x
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Event-mimicking Attacks and Countermeasures

» Modern grid with renewables is more stochastic in operations and requires real-
time monitoring to detect/identify real events (oscillations/outages) and attacks.

» ML-based detectors can be easily evaded by attacks that mimic events, ultimately,
causing significant damage on grid operations.

Normal Attack
behavior behavior

Successful mimicry
attacks hard to launch

mimicry attack: a careful cyberattack on data that throws off ML detector

Source: https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-examples-12f2283e06a1



Where can Attackers target in OT Systems? =
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easy to tamper PMU ; but for mimicking event attacks
- how to tamper data?
- how many PMUS to tamper? —
- how long to tamper?

Source: https://towardsdatascience.com/will-my-machine-learning-be-attacked-6295707625d8

extract and exploit
signal physics (modes)



Task 5 (a): Learn Event Signatures from Measurements =
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Prior work neglects the physics (e.g., modes, residues, frequency) encoded in PMU data
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Dictionary based learning for event identification

H. Li, et. al, "An Unsupervised Learning Framework for Event Detection, Type W. Li, et. al., "Real-Time Event Identification Through Low-Dimensional Subspace

Identification and Localization Using PMUs Without Any Historical Labels,"

PES GM 2019

Characterization of High-Dimensional Synchrophasor Data," [EEE TPS, vol. 33, no. 5,
pp. 4937-4947, Sept. 2018.



Task 5 (a): Learn Event Signatures from Measurements

Step 1: Feature Extraction
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Step 2: Feature Engineering

Construct the feature vector
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Step 3: Classification
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v’ Characterizing events based on a set of physically interpretable features
v’ Finding the most informative sparse set of features
v’ Learning a set of robust classification models to identify the events




Task 5 (a): Learn Event Signatures from Measurements =

Step 1: Feature Extraction Step 2: Feature Engineering _ Step 3: Classification
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Task 5 (a): Learn Event Signatures from Measurements

{ PMU channels Line Trip
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Yes! By identifying key event features that are easy
to synthesize by changing measurements!

[3] N. Tahipourbazargani et.al (2022) A Machine learning framework for event identification via modal analysis of PMU data, under review, IEEE PES.
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Task 5 (a): Threat Model

» (start with) White Box Attack Model: Attacker has full information of the event classifier
> Untampered Features: Fep, = [{o}, {0}, {|RP [}, (8}
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Task 5 (a): Threat Model

» Start with White Box Attack Model: Attacker has full information of the event classifier
> Untampered Features: Fep = [{o}, {0}, {|RP [}, (8}

» Which features can be tampered for maximal impact / misclassification?
» not your usual additive false data injection
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Task 5 (a): Threat Model
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» Start with White Box Attack Model: Attacker has full information of the event classifier

b (6}]

» Untampered Features: F ., = [{wk}, {o'k},{‘Rl((i)
» Which features can be tampered for maximal impact / misclassification?

» First attack effort: tamper with residual amplitudes Téﬁ = [{wk}, {ck},}[‘R,Ef)

p
yitm = ) RP+x) x (Z)" + )
k=1

# of features: p' < p
#of PMUs:i=1,....,m' <m
ch=Vm,Va,F

Step 3: Classification
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Task 5 (a): Tampering Residual Magnitudes

>

Tampering technique: add
20 to all first mode residues
for both Vm and F channels

lllustration shown here for
Generation Loss event

Similar results for Line Trip
events can be shown

AUC/ROC curves show that
misclassification is possible

However, time-series signal
has too large an amplitude
and could potentially be
detected as anomalous
(simple energy-based
anomaly detection could
work)
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Task 5 (a): Threat Model
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» Start with White Box Attack Model: Attacker has full information of the event classifier

» Untampered Features: F ., = [{wk}, {o'k},{‘Rl((i)

b (6}]

» Which features can be tampered for maximal impact / misclassification?

» 2nd attack effort: tamper residual angles: F}, = [{wk}, {Gk},{‘R,(f)‘},

Step 3: Classification
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Task 5 (a): Consequences of Tampering Residual Angles TT b

» Tamper residual angle of the first three PMUs with highest residues
» Angles modified by adding 100m

» succeeds in spoofing the classifier
» reconstructed signal indistinguishable from original

» However, attacker needs to tamper classification algorithm to spoof features directly
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Task 5 (a): Threat Model TT o

i ‘ =

» White Box Attack Model: Attacker has full information of the event classifier
» Untampered Features: F ., = [{wk}, {ck},{‘R,(f) }, {e,(j)}]

> Initial tests: tamper residual amplitudes and angles — either need large values or more
access

Attack avenues being explored:
» Can we intelligently tamper modes {w}, {o;}: key signatures of an event?

» How can topology information be utilized to identify most susceptible PMUs?

» Attacks are expensive and identifying a small set of features and PMUs to attack is crucial
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Task 5 (a): Next Steps TTT .
» System largely operate in normative conditions

» However, when events occur, they can be of more than two types

» A natural extension to multi-event classification is to include a third normative class (non-
event class)

» Are attacks easier (even white box ones) in the multi-class setting? We conjecture: yes

» Key challenge: designing intelligent attacks without resorting to brute force — requires
exploiting physics of the data without breaking physical laws
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Task 5 (a): Collaboration with RI| e NS

» Industry Collaboration:
Resource Innovations, INC @‘

(RII)

> Attack design on RII’s L .lL
Grid360 power flow . &~
simulator -

> IEEE118 sub-transmission (ﬂ }.:.-.-::::::_‘_'j.'.'.'.'.'.'_' fff e (O

network model is used é
» Loads modified on network
sub-region such that net Lt 1(9~ DL
change is zero | :
» Goal: cause line overflow
undetectable by

conventional state
estimators




Task 5 (a): From Lab to Practice

>
>
>

Industry Collaboration: Resource Innovations, INC
Exploring Grid360’s capabilities to understand where our research fits in
Understanding the intelligence of the state estimator by varying loads

measurements and checking for bad data flags
» Working on Rl team on multiple bugs that were discovered

» In the process of being fixed — weekly on-going meetings with Rl

Device Type | Measurement Type | Measurement Value | Estimate | Error RDFID
. GEM WMWY 155.0000 158.1162  -3.11621  _4E2T0DEG0274ADGESBOFVEDAS2464BAF
SE is able to detect @ = ff e e o o o o o o o e e e e e
load change of 10 MW e L MW 3424000 ___ 3355162 6.86380 _ 8989B6ASD7EACTST1G0EDEEBGGEETCO0
GEM WY 338.35659 3383565  -0.00003 _BDGDAFEGSSFFFGESDS441B16ATAFOTEC
GEM MYAR 4086065 408.6065 0 _C853A528180C3473FAACCCESB2651268
Device Type | Measurement Type | Measurement Value | Estimate | Error RDFID
SE failed to detect a GEN MW 338.3569 3385297 0.17275 _BDGDAFEGS5FFF6EID8441B16ATAFOT6C
load change of 1 MW =
GEM MVAR 408.6065 408.4812 012531 _C8R3IAR23180C3473IFAACCCEBLB2651268




Task 5 (a): Commercialization by RI|

» Evaluate efficacy of load attacks on RIl’s
Energy Management System platform

» Use SCADA data and simulate on Grid 360
software

» Can their conventional state estimator detect
an attack?

» Counter measures: use sophisticated
machine learning techniques to improve
state estimation under attacks

» Flag anomalous loads that results from
false measurements injected

» Work closely with RIl as they test our robust
EMS algorithms (e.g., bad data detector)
towards commercialization

» Key idea: use tomes of history data+ML
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Task 5 (a): Future directions

« ADeep Learning framework for attacks
« Learn generative model of corrupt PMU data

« Utilize knowledge of feature extraction process and physics of signal
- Adversarial training of generator: detector spoofed into misidentifying events

Generator

Physics-based
constraints

Feature
PMU Extraction Deep Neural
Data (Modal Network
Analysis)

Feature
Event is Extraction
misidentified Event Detector (Modal
AnaIyS|s

1

for corrupt PMU data

Discriminator

|

Corrupt PMU data

Generative distribution




Summary of Work for Q3 Fasale

Task 5 (attack generation) * Synthesize “intelligent” attacks Completed feature extraction
that mimic “events” by * Analyzing features realizable by
Tampering measurements. altering measurements.

Task 8 (attack detection) * develop ML and data-driven
“robust” detectors that detect

intelligent attacks.

Industry Collaboration * Seamlessly integrate ML detector Pilot study: test our prior load-
to Nexant Grid360 tool. altering attacks and detectors
using "smart-meter” data.
* Towards product: in four
quarters.

In two quarters.



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

