Enhancing Cybersecurity of Grid Operations

BIRD Review Meeting — Tasks 5 and 8

Lalitha Sankar Associate Professor Arizona State University

March 2023

ASU Team Members

Obai Bahwal 2nd Year PhD Student

Rajasekhar Anguluri Postdoctoral Scholar

Joel Mathias Postdoctoral Scholar

Nima T. Bazargani 5th Year PhD Student

Avinash Kodali MS Student

Also collaborating with John Dirkman, Narsi Vempati, Guanji Hou @ Resource Innovations Inc.

Task 5: Generate event-mimicking attacks ✓ Task 8: Detect event-mimicking attacks Commercialization: Software development with ✓ Resource Innovations

Event-mimicking Attacks and Countermeasures

- Modern grid with renewables is more stochastic in operations and requires realtime monitoring to detect/identify real events (oscillations/outages) and attacks.
- ML-based detectors can be easily evaded by attacks that mimic events, ultimately, causing significant damage on grid operations.

mimicry attack: a careful cyberattack on data that throws off ML detector

Source: https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-examples-12f2283e06a1

Mimicking Attacks in OT Systems

- Mimicking attacks have historically focused on IT systems
- Operational Technology (OT) systems are also vulnerable to mimicking attacks
- OT systems in power grid consider dynamics, temporal correlations of data, etc.
- Attacker can intrude OT systems at multiple locations

attacks target software internal to a computer

Where Can Attackers Target OT Systems?

PMU data can be falsified but for mimicking event attacks

- how to tamper data?
- how many PMUs to tamper?
- how long to tamper?

extract and exploit signal physics (modes)

Task 5: Learn Event Signatures from Measurements

- ✓ Characterizing events based on a set of physically interpretable features
- ✓ Finding the most informative sparse set of features
- \checkmark Learning a set of robust classification models to identify the events

[1] N. Taghipourbazargani, G. Dasarathy, L. Sankar and O. Kosut, "A Machine Learning Framework for Event Identification via Modal Analysis of PMU Data," in IEEE Transactions on Power Systems, 2022.

Task 5: Threat Model

- Start with White Box Attack Model: Attacker has full information of the event classifier (LR)
- Untampered Features:
 - Angular Frequency
 - Damping
 - Residual Amplitude
 - Residual Angle
 - Channels: Voltage magnitude, voltage angle, frequency
- Tamper features just enough for the event to be misclassified
 - Move feature sample across decision boundary

Task 5: Event Mimicking Attack Algorithm

Inputs: LR classifier, attack parameters, PMU data

- Tamper features until the event is misclassified by employing the knowledge of LR parameters
- 2. Reconstruct time signals of the tampered data
- 3. Replace the time domain signals for only the PMUs under the attacker's control
- 4. Extract features of the new signals set
- 5. Classify using LR model
- 6. Repeat 1 through 5 until misclassification

Output: tampered PMU measurements

Task 5: Setup and Assumptions for Illustrations

- Network and data: synthetic PMU data generated using PSS\E for Texas 2000-bus system
 - ➤ 400 generation loss and 400 line trip events
 - Voltage magnitude, voltage angle, and frequency measurements are collected from 95 PMUs across the system
- > Classifiers: Logistic regression (LR) and gradient boosting (GB) algorithms
 - Training data: 317 generation loss and 323 line trip events
 - Test data: 83 generation loss and 77 line trip events
 - Modal analysis is used for feature extraction

Task 5: Classification of untampered events

- > Event classifier is applied to 160 test data (83 generation loss and 77 line trip events)
- > LR and GB classifiers are used to classify untampered test data to establish a base case
 - Both models are trained on the same dataset
- Both models classify the events with very high accuracy

Task 5: Attack Illustration

- Attack Assumptions:
 - Attacker has full knowledge of LR classifier model
 - Attacker has access to a subset of system PMUs (no more than 20)
 - > Tampers 160 test data comprised of 83 generation loss and 77 line trip events
- Efficacy of tampered data also evaluated on GB classifier (trained on clean data)
- > Results: overall successful attack with higher success rate when applied to generation loss events
 - Line trip events are harder to tamper

Task 5: Illustration of Event Mimicking Signals

- What is the effect of the attack on the temporal signals?
 - Illustration here for an attack limited to 10 PMUs
 - Attack: Tamper Generation Loss event
- Tampered time signal for one such PMU:
 - Frequency, voltage magnitude, and angle plotted
 - > All channels are tampered in this attack

Task 5: Illustration of Event Mimicking Signals

- Illustration shown here for a tampered line trip event
 - Illustration here for an attack limited to 10 PMUs
- measurements from an attacked PMU
 - Led to a successful misclassification of line trip as generation loss

Knowing network configuration, attackers can maliciously change a subset of measurements with counterfeits before they reach the EMS

> Requires attacker to have access to measurement devices or data concentrators

> Can be unobservable and result in physical [2] / economic [3] consequences

[4] Liang, J., Sankar, L., Kosut O.: 'Vulnerability analysis and consequences of false data injection attack on power system state estimation', IEEE Transactions on Power Systems, ¹⁵ 2015, 31, (5), pp. 3864-72

 ^[2] Zhang, J., Sankar, L.: 'Physical system consequences of unobservable state-and-topology cyber-physical attacks', IEEE Transactions on Smart Grid, 2016, 7, (4), pp. 2016–2025
 [3] Moslemi, R., Mesbahi, A., Velni, J.M.: 'Design of robust profitable false data injection attacks in multi-settlement electricity markets', IET Generation, Transmission Distribution, 2018, 12, (6), pp. 1263–1270

Detecting Load Redistribution Attacks via Support Vector Models

Load Redistribution (LR) attacks: redistribute loads across buses without any change in net load

- Current net load prediction approaches can miss this entire class of false data injection attacks (FDIA)
- > Our detection methodology:
 - Grid telemetry including loads follow diurnal and seasonal patterns
 - Historical data can be used to predict such patterns
 - ML algorithms trained on such temporally correlated data can be used to predict loads at the bus-level
- Use multi-output support vector regression (SVR) load predictor
 - predicts loads by exploiting both spatial and temporal correlations
- Combine with a support vector machine (SVM) classifier to classify incoming load estimate as either normative or attacked

Dataset

- > PJM hourly zonal load data [5], 20 zones in total
- > Mapped publicly available PJM load data to the 30-bus system
- > Feature selection to predict loads at hour h + 1
 - ➤ Time information
 - Historical load values at past s hours, as well as at hour HR and HR+1 at past d days
 - Combine these values for multiple loads to capture spatial correlations
 - Can be applied to predict bus level loads

[5] "PJM metered hourly zonal load data," 2019. PJM Data Miner 2, https://dataminer2.pjm.com/feed/hrl_load_metered/definition

Commercialization: Load Prediction using SVR

- Modularized and documented the load prediction Python code which makes it easier to understand
- Performed rigorous testing on the load prediction code using the IEEE 30-bus system (map PJM loads to this system)
- Agile methodology using Jira to ensure timely completion of work
- Version control using GitHub throughout the project, enabling efficient tracking and management of code changes

> On-going team meetings with RI to hand-off code

- ➢ Corresponding ASU team:
 - ≻ Lalitha Sankar (PI)
 - Postdocs: Joel Mathias (commercialization effort liaison), Rajasekhar Anguluri (countermeasure development)
 - > Avinash Kodali (load prediction, attack design, and anomaly detection)
 - ≻ Nima T. Bazargani (event-ID)
 - > Obai Bahwal (event-mimicking attacks and countermeasures)
- > Specific questions on data and code changes discussed in these meetings
- Focus is on streamlined commented code (all in Python)
- ➢ RI to test algorithms under industry level simulations

≻ Corresponding RI team:

- > John Dirkman and Narsi Vempati (leads)
- ➢ Guanji Hou (consultant)
- RI is continuing to engage with industry partners to determine viability and best methods for commercialization of Load Prediction, Redistribution Attack Detection and Mitigation code
 - > A new engine to predict, monitor, and mitigate load measurement attacks

Commercialization Process - Load Prediction, Redistribution Attack Detection and Mitigation

Setup:

Load Prediction developed code on local machine Obtain and install input

•Obtain and install

- data on local machine
 Obtain and review user guide/guidance
 Obtain and install thirdparty applications
 License fee for third-
- party applicationsLicense structure for commercialization

Commercialization Plan and Revenue Estimate:

Lean Canvas
Discuss product with potential customers
Revenue Estimate

- Cost of
 Commercialization
 Price for Product
- •Price for Support and Maintenance
- Number of Installations
- Revenue from Product
 Revenue from Support and Maintenance
 Go/No Go Decision

Design:

customers

User Experience:
Data Input
Processing
Output/Visualization
Review use of third-party applications and options for mitigating or not using them
Integration with other applications - APIs
Testing Plan
Discuss product design with potential

Develop:

User Experience:
Data Input
Processing
Output/Visualization
Minimize use of thirdparty tools
Integration with other applications - APIs
Testing and defect resolution
Installation and User Guides

Deploy:

Marketing Collateral
Sales Support
Installation Support
Training
Testing and defect resolution
Ongoing Support

		Designed for:	Desigr	ned by:	Date:	Version:
The Lean Canvas		Load Prediction, Redistrib Attack Detection and Mitig	ution Jol pation	hn Dirkman	9 March 2023	1.0
Problem	Solution	Unique Value Prop	. B	Unfair Advantage	Customer Segments	4
Utilities lack software to predict and detect attacks intended to redistribute load measurement data.	Develop software to predict and detect attacks intended to redistribute load measurement data that can work with existing SCADA systems.	There is currently n available software t detect, and prevent loads.	o commercially o predict, attacks on	 ASU domain knowledge and research. Easier path to commercialization using Grid360 engines framework Established sales and delivery channels. 	Electric Distribution Util Worldwide	ity Companies
Existing Alternatives	Key Metrics	High-Level Concep	t 🌴	Channels	Early Adopters	
While there have been technical papers published on this topic, no known commercial software currently provides this capability.	Customer contacts, RFP's received, contracts closed.	Use support vector for enhanced load p combine with a sup machine (SVM) cla incoming load estin normative or attack	regression (SVR) prediction, then port vector ssifier to classify nate as either ed.	 Direct to utilities Via business partners: GE, Hitachi/ABB Via SI's: Infosys, Accenture, Capgemini, Deloitte, Guidehouse, HCL 	Existing RI and busines clients	ss partner
Cost Structure			Revenue Streams			
List your fixed and variable costs: • Business development costs • Software development and testing costs • Sales engineering costs • Project implementation costs			 List your sources of revenue: Software licenses: one-time/perpetual or annual/subscription/SaaS Implementation/integration Ongoing support and maintenance 			

Summary

	Details	Status
Task 5 (attack generation)	 Synthesize intelligent attacks that mimic natural events (e.g., line trip, generation loss) by tampering measurements Develop data poisoning methods using physics-informed machine learning methods to identify subsets of features amenable to perturbation 	 Completed: designing data tampering attacks that spoof events Identified events that are amenable to attacks In progress: Identify attacks robust to multiclass event classifiers
Task 8 (attack detection)	 Develop ML and data-driven "robust" detectors that detect intelligent false data injection attacks Algorithms to detect tampering of SCADA telemetry This effort can also be a relevant countermeasure for the FDIA in task 9 	 Completed: Handed off tested Python code for bus-level load prediction to RI In progress: Rigorously testing Python code to generate random and FDI attacks Developing countermeasures for event mimicking attacks
Industry Collaboration	 Developing commercial grade software for bus level load prediction in collaboration with RI 	 Biweekly meetings with RI RI evaluating business proposition