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1. False data injection review and our study
2. Other cyberattacks

3. Hardware-in-the-loop validation
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New Vulnerabilities on the Grid

Modern grid data-driven outlook = New cyber-attack menaces
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What is a FDIA? %
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False Data Injection Attacks:
* An attacker intercepts and maliciously changes the system measurements
* The objective is to cause harm in the real world

* Forinstance, a cyber-attack in a power system could cause a system operator to
take wrong control actions causing a blackout.

* While these cyber-attacks can cause dire consequences, they are hard to be
deployed practically due to unrealistic settings or assumptions.
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False Data Injection Attacks

A successful FDIA requires:

1. Create a corrupted measurement vector,Z =z +a =-
: T 2 ©=@

2. Pass the chi-squared test, J(x) = |[|z—hX)||* =T %
—

Problem: Power system model is not known, h(-) =>  Access only to the observed measurements, z

Alternative: Learn the underlying power system measurement distribution, Z~pg(Z) @@
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Proposed Framework:
Learning the underlying power system model
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Stage 2 Learning z=h(x)+e with a WGAN with regularization terms
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Outlines

2. Other cyberattacks
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Cyberattack on Hardware of Energy Internet
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Cyber-Attack Recognition based on Data Flow to Avoid %‘
Traditional Advanced Persistent Threat ARIZONR STATE
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Cyber-Attack Recognition based on Data Flow to Avoid %
Traditional Advanced Persistent Threat ARIZONR STATE
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Goal of APT attack source tracing:

* To locate the organization or Process of traceability

individual who launched the \ )
attack . Decompose into
a N

Process of determining
characteristic dimensions
g J

APT organizations characteristics: 1 Determine

N = e Associated with specific political entities. AZL;’{fj{Qf,ii‘,‘;js
* Can have different dimensions. ) + Compare
Botnet usage in cyber attack * Have relatively fixed attack targets: L Eﬁls:;r;ﬁgiiTc: ;gaat?;::fn
* Weapon arsenals. . ylocate
* Vulnerability libraries. \ specific organization )
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IT attacks on OT — An Example of DoS %
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Assumption 1 (DoS Frequency): Forty,t, € Ry, ts
> t1,there existn € R = 0 and tp € R; 5 such that o
(o) <n+2-0 | o
n ) >~ I Power system law based :
1 2 n TD : ::/t:::(nci::‘; power system : Q
where 1 is the parameter and tp is the energy o !
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Z .TijAfi I;g"’ _ I - P = :7797 l\\ —————————————
Assumption 2 (DoS Duration): For t,t, € Rsg, t, ] N %5
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|E(t17 tZ)l < ¢ + T APy e
where ¢ is the parameter and T is the energy The i*" load frequency control model

consumed to maintain a DoS per unit time.
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Cross-Layer Attacks: DoS and PMU Attacks %
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Cross-layer Attacks:
e Data transfer fail Areal [€-------;----- >  Area4
a yberAttacker ,’/
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Security OT via Cyber Aware Energy Management Systems
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Cyberattacks Detection of IT/OT Architecture—affect privacy of head, electric and cooling customer privacy—>national

security

Project development area

Purdue Enterprise Reference Architecture (PERA)

Area
A g it g |
et = e
Operatar TErTmE T
izre Warkstation e
1 I CcellfAres
Zo
Bra Discret Drive Continuous Safety nels)
Control Control Contrel ocess Control
Cantral =i
Cantral
[[sonson | [ower | [omon | [[robon | proces

Sensors

OT-Entity 1

OT-Entity 2

Privacy

attack |

Heating
utility
h
M edge

Electric
utility
M gdge

Cooling
Utility
M gdge

Ring structure vertical federated learning

Lossy

Loss,

Multi-task learning

13



ARIZONA STATE
UNIVERSITY

Outlines

3. Hardware-in-the-loop validation
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Model-Free FDIA with a WGAN %l
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Deploying a stealthy FDIA

» Bad data detector: Chi-square error test Challenges: f,)/-l
/I,I/ - ?
% = argmin(z — h(x))TW~1(z — h(x)) State estimator ~ * o Pass the Chi-square test: @Igf;

x o Guarantee Convergence?

m .
JX) =Z (z; — h(%))? /0 Chi-square test o Attack impact?

i=1
» Tampering measurements: Dire consequences in the grid
Proposed Solution:

* Learn a proxy SE model
Residual error test Proxy model
_ S12 5 115 * (5
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No grid ./
* Learn the sensor measurement distribution - Training a WGAN information

WGAN conditioned

min max IEZG,ZD"'[PrIEi"’[Pg [D(zp) - D(2)] on measurements

G DeD

* Embed the proxy model into the WGAN ~minmaxk, ., .p Ez.p, [D(zp) — D(@) + IZ— AE*(D)||5 + w, - d(z¢,Z)]
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Numerical Results

Wealth of data
from new
sensing devices

Learning the underlying power system

model through data

_________________________________________________________________________________

FDIA successfully

deployed
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Cybersecurity Solution with HyperSIM and EXATA %
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