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Overview of Task Progress to Date

Task 16: Reinforcement Learning Control for Cyber-Physical Systems (CPS)
Pl: Ying-Cheng Lai

Task Milestones

M16.1 Demonstration of ML-based digital twin to simulate diverse control scenarios
M16.1 Actual Progress

M16.2 Develop reinforcement learning based criteria for selecting the "best" control scenarios
M16.2 Actual Progress

M16.3 Construct a control-scenario library to correspond with attack-scenario library
M16.3 Actual Progress

M16.4 Demonstrate the power of control-scenario library to generate quick response
M16.4 Actual Progress

M16.5 Implement control-scenario library in OT and ICS software

M16.5 Actual Progress

Start Date
5/1/2022
1/5/2022

11/1/2022
1/5/2022
5/1/2023
5/1/2023

11/1/2023

11/1/2023
5/1/2024
5/1/2024

End Date
10/31/2022
10/31/2022

4/30/2023

4/30/2023
10/30/2023
10/30/2023

4/30/2024

4/30/2024
10/30/2024
10/30/2024

Today
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022
4/27/2022

Total Duration in Days
183
299
180
480
182
182
181
181
182
182

Progress
0%
37%
0%
23%
0%
0%
0%
0%
0%
0%
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Technical Content: Machine Learning Guaranteed Security of Power Grids __T-T f‘[% cx

* Scenario: Defense management team of a given large power grid performs stochastic game-playing to
simulate the dynamic interplay between the attacker and the defender;

* Goal: to uncover the “best” attack strategies that can result in the maximal damage to the grid;
* Optimal defense (control) strategy: protecting the components in the grid that such attack strategies target;
* Mathematical model: treating attacker-defender interaction as a zero-sum game;

* Approach: Deep Q-learning with a customized reward function for achieving the desired objectives as
directly as possible;

» C(Cascading failures: The deep-Q learning framework can be used to address problems of cascading failures
and timing delays.



Technical Content: Q-Learning vs Deep Q-Learning TﬁT 3 [”’ﬁm

State Q function
s; Q(s,a;)
state
FIG. 1. Q-Learning versus deep Q-Learning. The imple-
_ mentation of the Q-table is the main difference between Q-
Qvalue of each action learning and deep QQ-learning. Instead of mapping a (state, ac-
tion) pair to a Q-value using Q-table as is done in Q-learning,
deep Q-learning uses neural networks to map the states to (ac-
State action pair Q function tion, Q-value) pairs, which is the core reason deep Q-learning
(s, a;) Q(sy a;) can be used to solve large scale problems.
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Technical Content: Attack Scenario and Simulation Method s ?ﬂ“" S5

Attack on smart power grids:

« Attacker attempts to cause a pre- determined
percentage of the transmission lines to go outage

» Attacker attempts to maximize the generation loss
in the power system through a sequence of attacks;

Defense: the defender strives to mitigate the attack
consequences, regardless of whether they are due to
transmission line outages or are caused by generation
loss;

- ...t T —1t
_ init cas std cas
Generation loss Gloss = Gloss * I + Gloss 7

e T:time at which next attack will be launched
« G generation loss caused initially by the

attack

e G4 generation loss during actions

* t.qs: cascading failure length caused by the attack

Simulation tool: DC load flow simulator of cascading
(separation) in power systems (DCSIMSEP)

Defense
Decision
B H
 — )
Stochastic Zero-Sum Game /

Attacker uses the deep Q-learning algorithm to find an optimal attack
sequence to maximize the generation loss/transmission line outage;
Defender updates its defense set based on attacker’s previous policy;
The chosen actions of both players are given to the DCSIMSEP power
flow simulator and reward/cost is calculated and returned to the players;
The process continues until the defender’s protection set remains
unchanged for a number of cycles.



Technical Content: Attack on Smart Power Grids o R

The attacker attempts to cause a pre-determined percentage of the transmission lines to go outage

Wood and Wollenberg six-bus system
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r1, for IO > AO
Reward function: | r = ¢ ro, if attack is final n>n

IO/AO, otherwise,

IO: the instant number of transmission line outages caused by the
attack;

AQ: the attack objective

Example: if the protection set consists of lines 1 and 2, attacking line 5
will cause an instant outage of five lines (I0 =5 > A0 =4):

mmm) reward =1y

Attacking line 3 will cause lines 1, 2, and 3 to go down

mmm) reward = 3/4.
Eventually, if the number of current downed transmission lines is less
than AO and an attack causes the number of downed lines to be equal
to or larger than AO

mem) reward=ry,



Technical Content: Attack Induced Generation Loss . :ﬂ s

 [f the protection set consists of lines 1 and 2, attacking line 5 will
cause an instant outage of five lines (I0 =5 > A0 =4): reward = 1y,
Wood and Wollenberg six-bus system

GIME = 210 MW, G524 = 84 MW, t.qs = 331.61s
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Technical Content: Optimal Defense Strategy for IEEE 30-Bus System b .
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Evolution of reward function values during the learning phase in the switching line problem
When the defender chooses a random protection set {1, 2, 3}, the attacker finds an optimal sequence to get a large reward;
After some cycles, the defender chooses {15, 16} as its protection set and the attacker is unable to find a sequence with a

reward of more than r = 2.6.
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Product: A Working Manuscript to be Submitted Shortly y.

Defending smart electrical power grids against cyberattacks with deep Q-learning

Mohammadamin Moradi,! Yang Weng,! and Ying-Cheng Lai''?:*

1School of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ 85287, USA
2 Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
(Dated: May 3, 2022)

A key to ensuring the security of smart electrical power grids is to devise and deploy effective
defense strategies against cyberattacks. To achieve this goal, an essential task is to simulate and
understand the dynamical interplay between the attacker and defender, for which stochastic game
theory and reinforcement learning stand out as a powerful mathematical /computational framework.
Existing works were based on conventional Q-learning to find the critical sections of a power grid
to choose an effective defense strategy, but the methodology is applicable to small systems only.
Additional issues with Q-learning are the difficulty to take into account the timings of cascading
failures in the reward function and deterministic modeling of the game while the attack success
depends on parameters and typically has a stochastic nature. Our solution to overcoming these
difficulties is to develop a deep Q-learning based stochastic zero-sum Nash strategy solution. We
demonstrate the workings of our deep-Q learning solution using the benchmark W&W 6-bus and
the IEEE 30-bus systems, the latter being a relatively large scale power-grid system that defies the
conventional Q-learning approach. Comparison with alternative reinforcement learning methods
provides further support for the general applicability of our deep-Q learning framework in ensuring
secure operation of modern power grid systems.
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Commercialization Plan oo,

Past encounter with commercialization (Lai):

* In August 2020, the Air Force/MIT Artificial Intelligence Accelerator launched a public challenge to
help create the artificial intelligence needed to solve the magnetic navigation problem.

» The specific call is for the signal enhancement for magnetic navigation (MagNav) challenge problem
with the goal to use magnetometer readings recorded from within a cockpit and remove the aircraft
magnetic noise to yield a clean magnetic signal.

 The ASU team led by Lai responded and tested three types of machine learning methods: multilayer
perceptrons (MLPs), reservoir computing, and long short-term memory (LSTM) neural networks.

e In December 2020, the Air Force/MIT Artificial Intelligence Accelerator placed the ASU team as the
winning team.

e The involved Air Force officers suggested to Lai commercializing the machine-learning technique.

The ASU Task 16 team will work with Nexant to implement the principle and methodologies of
reinforcement learning control of cyber physical systems into the existing industrial Operational
Technology and Industrial Control Systems management software tools.
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