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c  Re-dispatch Discrete actions:
Action » Topology actions: changing the topology of certain substations (TG)

Type: Continuous

* Status actions: transmission or power line switching (PLS)
Range: [Puin: Prmasx]

Action Space

D Curtailment

Action
Type: Continuous

Range: [Pryin: Prmax]

Continuous actions:

* Redispatch actions: changing the operating schedule of power plants
* Curtailment actions: limiting the production of renewable generators
» Set-storage actions: changing the role of some storage units from

Set Storage .
L o8 loads to generators or vice versa

Action
Type: Continuous
Range: [Ewmin, Emas]

Example: IEEE 118-Bus system: about 12 million possible actions
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Power Grid on Grid2op Platform

Generator station

26.27 MW, 2 - -
A
1/ > 7371 % @t ERR % @/

Load: a Small
Town

06/01 00:00
—— powerline
= substation

"\ load
(7 generator
<> storage
—8— no bus
—e— bus1
—a— bus2

s02s% 7282% -
73.72% / -

Substation
(Bus)

Transmission lines




o
)]

Powerline Connections
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TGCN: action specific (e.g., five different TGCNs
depending on the action types)

Input: currents from all nodes in the line graph
Output: currents from all nodes in the line graph
Training data: Grid2op simulations
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Correlation of Line Current Flow under Attack ey
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Correlations are neither too small nor too large, justifying TGCN
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TGCN Aided RL for Optimal Agent Selection Under Attack
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Examples of TGCN Prediction
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Selection of Controller Based on TGCN Prediction ij ﬁﬂ*m

Agent Selection Frequency based on Decision Threshold
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Industrial Partner and Commercialization
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The ASU Task 16 team is working with John Dirkman’s team at Resource Innovations Nexant to
implement the principle and methodologies of reinforcement learning control of cyber physical systems

into the existing industrial software tools.

Parallel heterogeneous reinforcement learning for defending large power grids

Mohammadamin Moradi,! Shirin Panahi,! Zheng-Meng Zhai,! Yang Weng,! John Dirkman.? and Ying-Cheng Lail»3 *

LSchool of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, AZ 85287, USA
2 Resource Innovations, Nexant Inc., 6620 Southpoint Drive South, Jacksonville, FL 32216-8098
3 Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
(Dated: March 2, 2023)

Reinforcement learning (RIL) has been employed to devise the best course of actions in defending
the critical infrastructures such as large power networks against cyberattacks. However, as the size
of the power grid system grows, the RL action space increases exponentially, making it practically
infesible for the RL agent to efficiently explore. The current RL algorithms tailored to power grids
are generally not suited when the system size becomes large, in spite of trade-offs. We exploit
temporal graph convolutional neural networks (TGCNs) to develop a parallel but heterogeneous RL
framework to meet this challenge. In particular, we divide the action space into smaller subspaces,
each explored by a RL agent. How to efficiently organize the spatiotemporal action sequences then
becomes a great challenge. We invoke TGCN to meet this challenge through accurately predicting
the performance of each individual RL agent in the event of an attack. The top performing agent
is selected, resulting in the optimal sequence of actions. We demonstrate the effectiveness of our
TGCN method to capture both the temporal and spatial dependencies of the graph structured data.
The framework is validated by simulations of the RTE 14-Bus system using the Grid20P platform.
Our TGCN framework provides a computationally efficient framework for generating the best course
of actions to defend large cyberphysical systems against attacks.

John on 3/1/2023:

“Regarding the manuscript for RL
(Task 16) I would be happy to co-
author this work and I will also
consider the potential for
commercialization. I will also
evaluate if we could also use
Grid360 to further valuate and test
the developed code.”

3/10/2023: A commercialization
meeting with John, who deemed.
the TGCN framework interesting
and potentially commercializable.




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10

