Task 11: AI Based Intrusion Detection

Ying-Cheng Lai Arizona State University

1/24/2022

1

- **Main Objective**: to develop a network nonlinear dynamics and machine-learning based framework to detect external perturbations that can potentially cause catastrophic damages to a distributed electrical power network.
- **Cascading Failures**: catastrophic for power networks with heterogeneous energy sources.
- **Research Focus**: identifying the type of perturbations or intrusion that will result in cascading failures and developing real-time detection schemes based on digital twins.
- **Digital Twin for Electrical Power Systems**: recurrent neural-network based machine-learning architecture as required by the intrinsic nonlinear dynamics of the power systems.
- **Training Data**: from real-world power systems possibly through enterprise Operational Technology (OT) management tools and Industrial Control System (ICS) tools.
- Anticipated Outcome: enabling a systematic identification of all types of possible attack (intrusion) scenarios that can potentially lead to cascading failures, resulting in a "library" of such intrusion types.

Technical Content (1)

Reservoir computing: general architecture

- H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, *Science* **304**, 78 (2004);
- J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach, *Phys. Rev. Lett.* **120**, 024102 (2018);
- J. Jiang and Y.-C. Lai, Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius, *Phys. Rev. Research* **1**, 033056 (2019).

ASU Design: Creation of recurrent neural-network based digital twin

L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, <u>"Machine learning prediction of critical</u> transition and system collapse," *Physical Review Research* **3**, 013090, 1-14 (2021)

Technical Content (2)

Team Members and How They Interact

Team for Task 11

- Ling-Wei Kong (main), PhD candidate in ASU Electrical Engineering with experience in reservoir computing, nonlinear dynamics, and complex systems (In ASU EE for three years; eight refereed-journal papers)
- Amin Moradi (secondary), new PhD student in ASU Electrical Engineering with experience in reinforcement learning (one refereed-journal paper)
- Ying-Cheng Lai (Task lead), ASU Electrical Engineering
- Yang Weng (Consortium lead-PI), ASU Electrical Engineering
- John Dirkman, VP of Product Management and Resource Innovations of Nexant

Main student researcher

Follow

TITLE	CITED BY	YEAR
Machine learning prediction of critical transition and system collapse LW Kong, HW Fan, C Grebogi, YC Lai Physical Review Research 3 (1), 013090	18	2021

Team interaction/collaboration

- Lai will work with the two PhD students on basic principles of digital twins and AI based intrusion detection for electrical power systems, in collaboration with Weng.
- The Task 11 team will work with Dirkman to develop software of recurrent neural-network based intrusion detection paradigm

Past encounter with commercialization (Lai):

- In August 2020, the Air Force/MIT Artificial Intelligence Accelerator launched a public challenge to help create the artificial intelligence needed to solve the magnetic navigation problem.
- The specific call was for the signal enhancement for magnetic navigation (MagNav) challenge problem with the goal to use magnetometer readings recorded from within a cockpit and remove the aircraft magnetic noise to yield a clean magnetic signal.
- The ASU team led by Lai responded and tested three types of machine learning methods: multilayer perceptrons (MLPs), reservoir computing, and long short-term memory (LSTM) neural networks.
- In December 2020, the Air Force/MIT Artificial Intelligence Accelerator placed the ASU team as the winning team.
- The involved Air Force officers suggested to Lai to commercialize the machine-learning technique.

The ASU Task 11 team will work with Nexant to incorporate the principle and methodologies of digital twins for AI-based intrusion detection into the existing industrial Operational Technology and Industrial Control Systems management software tools.