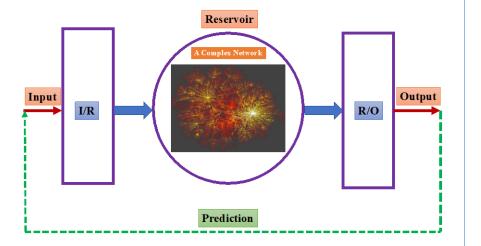

## Comprehensive Cybersecurity Technology for Critical Power Infrastructure AI-Based Centralized Defense and Edge Resilience



Prepared for **Itai Ganzer** and **Ofer Goldhirsh** Israel Innovation Authority **Avi Shavit** and **Eynan Lichterman** Israel Ministry of Energy

# **Task 11: AI Based Intrusion Detection**

Ying-Cheng Lai Arizona State University 5/9/2022

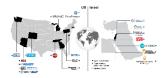


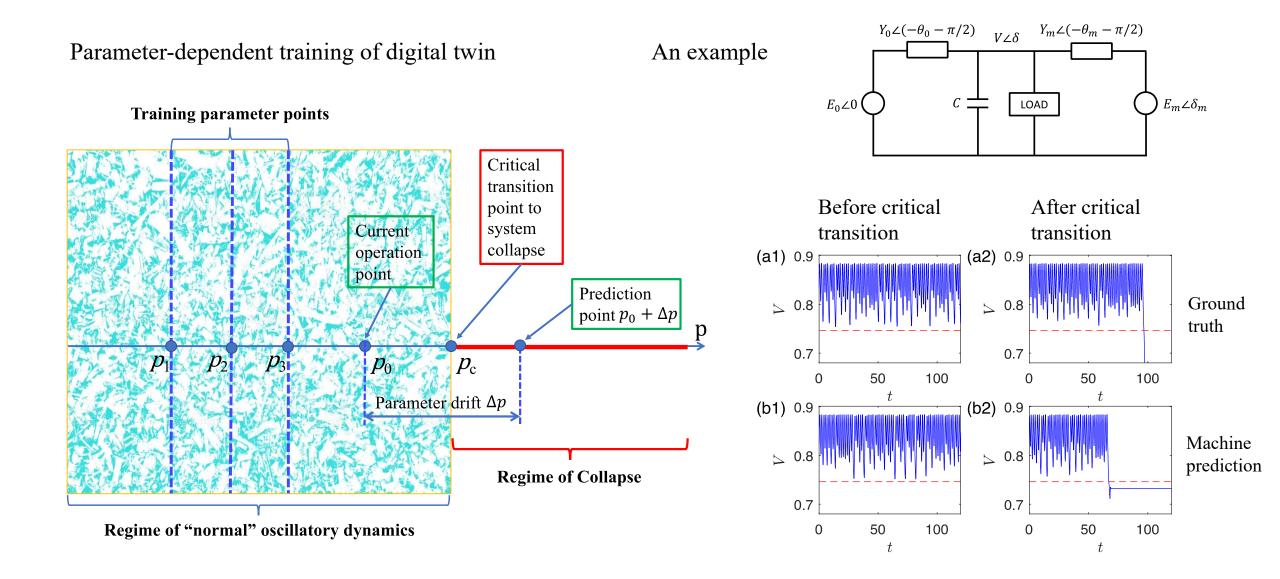

| Task 11: AI Based Intrusion Detection                                             |            |            |          |                        |          |
|-----------------------------------------------------------------------------------|------------|------------|----------|------------------------|----------|
| Pis: Ying-Cheng Lai (ASU), Yisroel Mirsky (BGU)                                   |            |            |          |                        |          |
| Task Milestones                                                                   | Start Date | End Date   | Today    | Total Duration in Days | Progress |
| M11.1 Analysis of enterprise and ICS NIDS software architectures                  | 11/1/2021  | 10/31/2022 | 5/9/2022 | 364                    |          |
| M11.1 Actual Progress                                                             | 1/5/2022   | 10/31/2022 | 5/9/2022 | 299                    | 30%      |
| M11.2 Develop digital twin to generate labeled data                               | 11/1/2021  | 4/30/2023  | 5/9/2022 | 545                    |          |
| M11.2 Actual Progress                                                             | 1/5/2022   | 4/30/2023  | 5/9/2022 | 480                    | 20%      |
| M11.3 Design attack scenarios for the generation of labeled data                  | 11/1/2021  | 10/31/2023 | 5/9/2022 | 729                    |          |
| M11.3 Actual Progress                                                             | 1/5/2022   | 10/31/2023 | 5/9/2022 | 664                    | 15%      |
| M11.4 Design Deep Learning architecture for attack detection                      | 1/5/2023   | 10/31/2023 | 5/9/2022 | 299                    |          |
| M11.4 Actual Progress                                                             | 1/5/2022   | 10/31/2023 | 5/9/2022 | 664                    | 10%      |
| M11.5 Design Deep Reinforcement Learning architecture                             | 1/5/2023   | 10/31/2023 | 5/9/2022 | 299                    |          |
| M11.5 Actual Progress                                                             | 1/5/2022   | 10/31/2023 | 5/9/2022 | 664                    | 15%      |
| M11.6 Design of a real-time Deepfake Detection Tool                               | 5/1/2022   | 4/30/2023  | 5/9/2022 | 364                    |          |
| M11.6 Actual Progress                                                             | 5/1/2022   | 4/30/2023  | 5/9/2022 | 364                    |          |
| M11.7 Develop prototype for identifying Real-time Deepfakes                       | 4/1/2023   | 4/30/2024  | 5/9/2022 | 395                    |          |
| M11.7 Actual Progress                                                             | 4/1/2023   | 4/30/2024  | 5/9/2022 | 395                    |          |
| Note: Prof. Lai's milestones: M11.1-M11.5; Prof. Mirsky's milestones: M11.6-M11.7 |            |            |          |                        |          |
| · · · · ·                                                                         |            |            |          |                        |          |



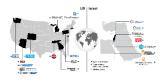


### Reservoir computing: general architecture

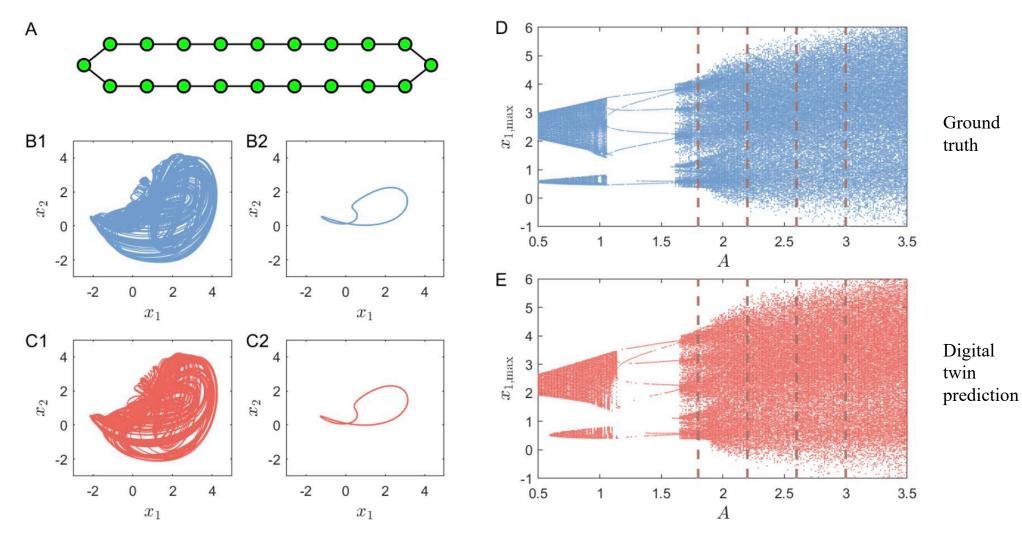




- H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, *Science* **304**, 78 (2004);
- J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach, *Phys. Rev. Lett.* **120**, 024102 (2018);
- J. Jiang and Y.-C. Lai, Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius, *Phys. Rev. Research* **1**, 033056 (2019).

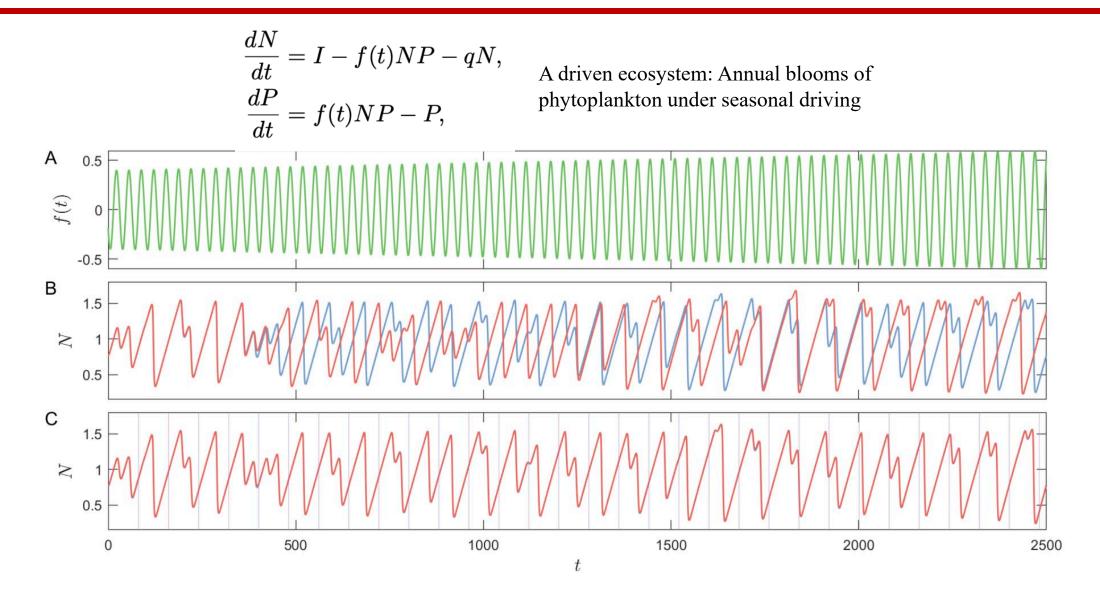
ASU Design: Creation of recurrent neural-network based digital twin




- L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai\*, "Machine learning prediction of critical transition and system collapse," *Physical Review Research* 3, 013090, 1-14 (2021)
- L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai\*, "Digital twins of nonlinear dynamical systems," working paper (2022).







## Technical Content: Forecasting Global Dynamics

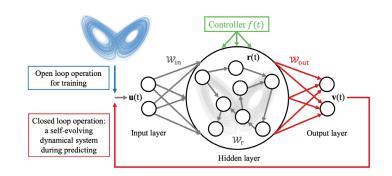


Lorenz-96 climate network










#### Digital twins of nonlinear dynamical systems

Ling-Wei Kong,<sup>1</sup> Yang Weng,<sup>1</sup> Bryan Glaz,<sup>2</sup> Mulugeta Haile,<sup>2</sup> and Ying-Cheng Lai<sup>1,3,\*</sup>

 <sup>1</sup>School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
<sup>2</sup>Vehicle Technology Directorate, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1138, USA
<sup>3</sup>Department of Physics, Arizona State University, Tempe, Arizona 85287, USA (Dated: May 3, 2022)

We articulate the design imperatives for creating machine-learning based digital twins for nonlinear dynamical systems subject to external driving, which can be used to monitor the "health" of the target system and to anticipate its possible future collapse in different scenarios. The digital twins are tested on prototypical systems from optics, ecology, and climate, where the respective specific examples are a driven chaotic  $CO_2$  laser system, a model of phytoplankton subject to seasonality, and the driven Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir computers as the platform, the digital twins are capable of a variety of challenging forecasting and monitoring tasks. In particular, a digital twin created according to our design imperatives has the following capabilities: (1) extrapolating the dynamics of the target system to parameter regimes that it has never experienced before, (2) making continual forecasting and monitoring with sparse real-time updates under nonstationary external driving, (3) inferring the existence of hidden variables in the target system and accurately reproducing/predicting their dynamical evolution into the future, (4) adapting to external driving of different waveforms, and (5) extrapolating the global bifurcation behaviors to network systems of different sizes. These features make our digital twins appealing in significant applications such as monitoring the health of critical systems of current interest and forecasting their potential collapse induced by environmental changes or perturbations. Such systems can be an infrastructure, an ecosystem, or a regional climate system.



#### ACKNOWLEDGMENT

This work was mainly supported by U.S.-Israel Energy Center managed by the Israel-U.S. Binational Industrial Research and Development (BIRD) Foundation.



Past encounter with commercialization (Lai):

- In August 2020, the Air Force/MIT Artificial Intelligence Accelerator launched a public challenge to help create the artificial intelligence needed to solve the magnetic navigation problem.
- The specific call was for the signal enhancement for magnetic navigation (MagNav) challenge problem with the goal to use magnetometer readings recorded from within a cockpit and remove the aircraft magnetic noise to yield a clean magnetic signal.
- The ASU team led by Lai responded and tested three types of machine learning methods: multilayer perceptrons (MLPs), reservoir computing, and long short-term memory (LSTM) neural networks.
- In December 2020, the Air Force/MIT Artificial Intelligence Accelerator placed the ASU team as the winning team.
- The involved Air Force officers suggested to Lai to commercialize the machine-learning technique.

The ASU Task 11 team will work with Nexant to incorporate the principle and methodologies of digital twins for AI-based intrusion detection into the existing industrial Operational Technology and Industrial Control Systems management software tools.