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Overview of Task Progress To date

Task 11: Al Based Intrusion Detection
Pis: Ying-Cheng Lai (ASU), Yisroel Mirsky (BGU)

Task Milestones

M11.1 Analysis of enterprise and ICS NIDS software architectures
M11.1 Actual Progress

M11.2 Develop digital twin to generate labeled data

M11.2 Actual Progress

M11.3 Design attack scenarios for the generation of labeled data
M11.3 Actual Progress

M11.4 Design Deep Learning architecture for attack detection
M11.4 Actual Progress

M11.5 Design Deep Reinforcement Learning architecture
M11.5 Actual Progress

M11.6 Design of areal-time Deepfake Detection Tool

M11.6 Actual Progress

M11.7 Develop prototype for identifying Real-time Deepfakes
M11.7 Actual Progress

Note: Prof. Lai's milestones: M11.1-M11.5; Prof. Mirsky's milestones: M11.6-M11.7
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1/5/2022
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End Date
10/31/2022
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10/31/2023
10/31/2023
10/31/2023
10/31/2023

4/30/2023

4/30/2023

4/30/2024
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Today

5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
5/9/2022
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5/9/2022
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5/9/2022

Total Duration in Days
364
299
545
480
729
664
299
664
299
664
364
364
395
395

Progress

30%
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15%

10%

15%



Technical Content: Design Imperatives of Digital Twins T i ﬁ

Reservoir computing: general architecture
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*  H. Jaeger and H. Haas, Harnessing nonlinearity:
Predicting chaotic systems and saving energy in
wireless communication, Science 304, 78 (2004);

* J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott,
Model-Free Prediction of Large Spatiotemporally
Chaotic Systems from Data: A Reservoir Computing
Approach, Phys. Rev. Lett. 120, 024102 (2018);

* J.Jiang and Y.-C. Lai, Model-free prediction of
spatiotemporal dynamical systems with recurrent neural
networks: Role of network spectral radius, Phys. Rev.
Research 1, 033056 (2019).

Open loop operation
for training

Closed loop operation:
a self-evolving
dynamical system
during predicting
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L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai*, “Machine learning prediction of
critical transition and system collapse,” Physical Review Research 3, 013090, 1-14
(2021)

L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai*, “Digital twins of nonlinear
dynamical systems,” working paper (2022).
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Technical Content: Parameter Adaptable Training of Digital Twins ’ %W :
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Technical Content: Forecasting Global Dynamics

Lorenz-96 climate network
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Technical Content: Continual Forecasting with Sparse System Updates TTI T‘ﬂ ==
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Product: A Working Manuscript to be Submitted Shortly 12

Digital twins of nonlinear dynamical systems

Ling-Wei Kong,! Yang Weng,! Bryan Glaz,> Mulugeta Haile,? and Ying-Cheng Lail:3:*
LSchool of Electrical, Computer and Energy Engineering,
Arizona State University, Tempe, Arizona 85287, USA Controller /(£
% Vehicle Technology Directorate, CCDC Army Research Laboratory,
2800 Powder Mill Road, Adelphi, MD 20783-1138, USA

3 Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
(Dated: May 3, 2022) o &
Closed loop operation:
We articulate the design imperatives for creating machine-learning based digital twins for nonlin- Pt g Output layer
ear dynamical systems subject to external driving, which can be used to monitor the “health” of the during predictng Hidden layer

target system and to anticipate its possible future collapse in different scenarios. The digital twins
are tested on prototypical systems from optics, ecology, and climate, where the respective specific
examples are a driven chaotic CO2 laser system, a model of phytoplankton subject to seasonality,

and the driven Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir ACKNOWLEDGMENT

computers as the platform, the digital twins are capable of a variety of challenging forecasting and
monitoring tasks. In particular, a digital twin created according to our design imperatives has the
following capabilities: (1) extrapolating the dynamics of the target system to parameter regimes

This work was mainly supported by U.S.-Israel En-
ergy Center managed by the Israel-U.S. Binational In-
dustrial Research and Development (BIRD) Foundation.

that it has never experienced before, (2) making continual forecasting and monitoring with sparse
real-time updates under nonstationary external driving, (3) inferring the existence of hidden vari-
ables in the target system and accurately reproducing/predicting their dynamical evolution into
the future, (4) adapting to external driving of different waveforms, and (5) extrapolating the global
bifurcation behaviors to network systems of different sizes. These features make our digital twins
appealing in significant applications such as monitoring the health of critical systems of current
interest and forecasting their potential collapse induced by environmental changes or perturbations.
Such systems can be an infrastructure, an ecosystem, or a regional climate system.



Commercialization Plan oo,

Past encounter with commercialization (Lai):

* In August 2020, the Air Force/MIT Artificial Intelligence Accelerator launched a public challenge to
help create the artificial intelligence needed to solve the magnetic navigation problem.

» The specific call was for the signal enhancement for magnetic navigation (MagNav) challenge problem
with the goal to use magnetometer readings recorded from within a cockpit and remove the aircraft
magnetic noise to yield a clean magnetic signal.

 The ASU team led by Lai responded and tested three types of machine learning methods: multilayer
perceptrons (MLPs), reservoir computing, and long short-term memory (LSTM) neural networks.

e In December 2020, the Air Force/MIT Artificial Intelligence Accelerator placed the ASU team as the
winning team.

* The involved Air Force officers suggested to Lai to commercialize the machine-learning technique.

The ASU Task 11 team will work with Nexant to incorporate the principle and methodologies of
digital twins for Al-based intrusion detection into the existing industrial Operational Technology and
Industrial Control Systems management software tools.
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