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Malwwerelab Our Goals and Approach

At the Cyber Security Research Center

Goal:

Developing an accurate anomaly detection model for ICS based on multivariate time series data (MTSD).

Our proposed approach:

Exploiting and Fusing multiple ICS data sources (Physical layer, Network layer etc.)

Mining Time Interval temporal patterns that capture the temporal interaction (8. layers and variables)
Induce an ML based detection model that well profile normal ICS behavior over time

Detect Anomalous behaviors in ICS based on the profiles we have learned

Current sub goals:

Fully understanding the data that we were provided with (Delek, Otorio, DLC)

Exploring whether the data is enough for our needs

Raising our gaps\inputs regarding the data

Receiving further data that meets our needs

Designing and Developing our proposed detection model based on the updated data we’ll recei\ée
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At the Cyber Security Research Center
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Note: vision can be achieved only if all data sources (layers) will be concurrently recorded from same ICS

Current Data: Temporal Patterns Mining from one source separately
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A oSy Rear S o Delek-US Pl - Multivariate Time Series Data (MTSD)

A Recording of a Single ICS entity (Physical layer)

Timestamped data, collected from hundreds of sensors via the Pl framework 556
Raw Features (different sensor)

Recording duration ~12 months

Sampling rate every 30 minutes

17521 Timestamped values (in total from all data sources\ sensors)

Our inputs and gaps to be filled:

. More explanations and descriptions are required regarding the data (Bob?)

. Higher Sampling rate is required (much lesser than 30 current minutes, e.g. every minute)
. Data recorded from more layers are required to better Profile a Generic Normal Behavior
Malicious or Anomalous data should be provided to evaluate the model

DateTime [DateTime_Elapsed DateTime_year DateTime_month DateTime_day DateTime_hour DateTime_minute DateTime_second DateTime_weekday §N10_HCO001A_MV .. N10_FI1053_PV

2860.39990 0.000000 2017 10 31 9 35 45 3 58.999939 .. 5.422828
2860.42065 0.020833 2017 10 3 10 5 45 58.999939 . 5.188814
2860.44141 0.041667 2017 10 31 10 35 45 58.999939 .. 4.270872

2860.46240 0.062500 2017 10 31 1 5 45 58.999939 .. 5.009398

w W W w

2860.48315 0.083333 2017 10 31 1 35 45

58.999939 .. 4636016
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Temporal Patterns Mining — Delek-US MTSD Example
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Temporal Patterns For Anomaly Detection — Delek-US MTSD Example
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Temporal Explainability of ICS behavior based on

Mined Time Interval Temporal Patterns
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Temporal Patterns Explainability — Developing KBTA for ICS

Knowledge Based Temporal Abstraction of an
example feature from the WADI Dataset

>

FlowRatePipel [ Rate of flow of water [ 10 15 Al =1
into pipe 1 in the m/s | m/s
testbed

FlowRatePipe2 | Rate of flow of water | 8 12 |A|>1.5
into pipe 2 in the| m/s | m/s
testbed

FlowRatePipe3 | Rate of flow of water | 20 | 30 Al >4
into pipe 3 in the m/s | m/s
testbed

Boilerl Temp Temperature of [ 40° | 110° | |A]>0.05
boiler 1 C C

Tankl Pressure |Pressure of water| 1e6 | 2e6 | |A|>1e5
tank 1 Pa Pa
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Temporal Patterns Explainability — Developing Exploration & Visualization Module

Highlighting and visualizing interesting TPs across time, one can easily explain temporal behaviors.
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Experiments and Current Results

for Tasks 10 and 12

Based on WADI Dataset



ralwereab WADI - Multivariate Time Series Data (MTSD)

« The WADI dataset (Ahmed et al. 2017) is a water distribution testbed related data.

 WADI consists of a total of five stages:

* Three stages controlled by Programmable Logic Controllers (PLCs)
e Two stages controlled via Remote Terminal Units (RTUs).

* The recorded data consists of:
16 days of sampling (14 normal days ; 2 days containing attack scenarios)
« 123 measurements (continuous as well as categorial) regarding the testbed:
e Actuators (valves etc.) related
 Sensors (pH etc.) related
 Sampling rates: 60 Hz (each second)
14 different malicious attacks on different parts (e.g. Sensors, Valves, Pumps) of the testbed
* High class imbalance — 94% of the data is “no-attack” and 6% is “attack”
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MalwerdLab  WADI - Methods and Experimental Design

At the Cyber Security Research Center
Data preprocessing:

. Data splitting according to the shortest attack duration (88 seconds)
. 1,980 samples: 120 are related to 1 of 14 attacks, 1880 samples are “no-attack” (Normal)
- A class balance of 94% Vs. 6%.

Temporal Abstraction & Temporal Patterns mining:
. State abstraction (only) using Equal Frequency Discretization (EFD)
. A vertical support of 50%
. Mining Temporal Patterns of up to size 3 (including)

Machine Learning Algorithms:
. Feature representation using Horizontal Support, Binary
*  Feature selection using: Entropy, Gini;
 Selecting different amounts of temporal patterns: 25, 50, 100, 200, 300, 400, 500 and All
e  Variety of ML algorithms; RF, SVM (Linear & RBF kernels), KNN, ANN, NB, and LR.

Goal:
* Evaluate the detection capability of our proposed detection method
* Given new (unlabeled) time series of ICS data our method should correctly classify to “attack” or “norma

|)I

Experimental Design:
* Thelearning methods were evaluated using a stratified 5 folds CV
e (lassification performance checked correctness of classifying a given new time series an attack or not.
e (lassification performance was averaged across the folds and reported on next slide
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Temporal Patterns Mining

WADI - Results

* Atotal of 121,500 time interval temporal patterns have been discovered

 Atotal of 105,000 in the “Attack

class of which around 41,000 are exclusive
 Atotal of 80,600 in the “No-Attack” class of which around 16,800 are exclusive

« Atotal of 63,700 were mutual for both “Attack” and “No-Attacks”

Classification performance (best results are in red)

Method | Precision | Recall(TPR)

KNN (k=5), All TPs, Horizontal Support — Best Precision setup
KNN (k=5), Top 100 TPs, Binary, Entropy FS — Best Recall setup
KNN (k=5), All TPs, Horizontal Support — Best F1-Score setup
MAD-GAN (Li et al. 2019) — Best Precision setup

MAD-GAN (Li et al. 2019) — Best Recall setup

MAD-GAN (Li et al. 2019) — Best F1-Score setup

66.26%
49.21%
66.26%
46.98%
6.46%
41.44%

74.43%
87.4%
74.43%
24.58
99%
33.92%

75.89%
52.1%
75.89%
32%
12%
37%
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ralwereab WADI - TPs Explainability

Highlighting and visualizing interesting TPs across time, one can easily explain temporal behaviors.
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At the Cyber Security Research Center

WADI data collection (water Distribution):

Data preprocessing:
 Split the data differently and tune for the best split

 Reduce the number of features using feature selection on the raw data

Temporal Abstraction & Temporal Patterns mining:
 Leverage different discretization approaches (EWD, TD4C or other)

 Leverage additional temporal abstractions (states, gradients)

Machine Learning Algorithms:
e Evaluate additional algorithms as well as TPs dedicated ones (TPF, STF-Mine etc.)

Machine Learning Task:
* Anomaly detection — extend our supervised model

SWAT Data set (Secure Water Treatment)
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