

Task 10:

Mining Time Oriented Patterns For

Anomaly Detection in ICS

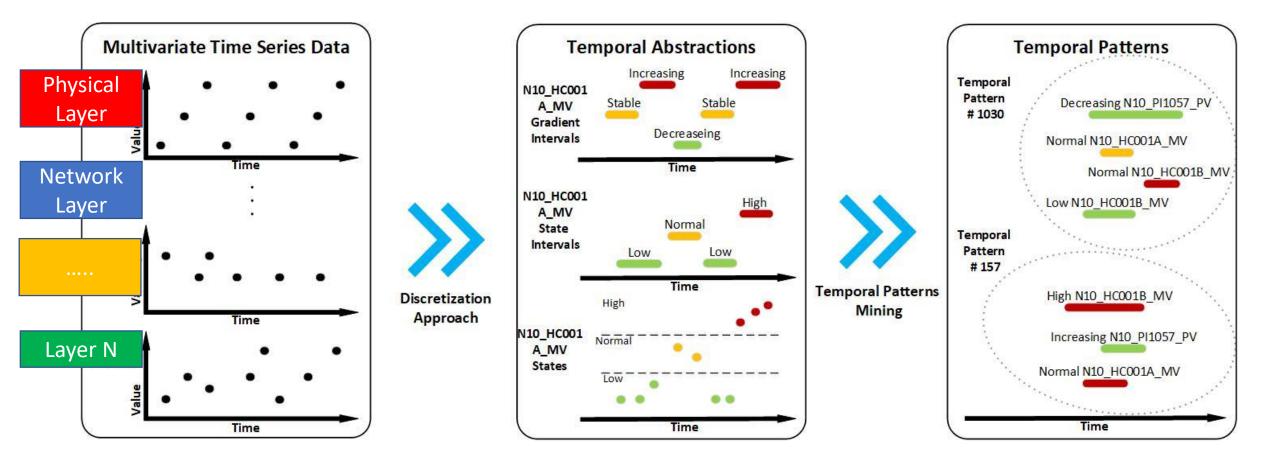
Our Goals and Approach

• <u>Goal:</u>

Developing an accurate anomaly detection model for ICS based on multivariate time series data (MTSD).

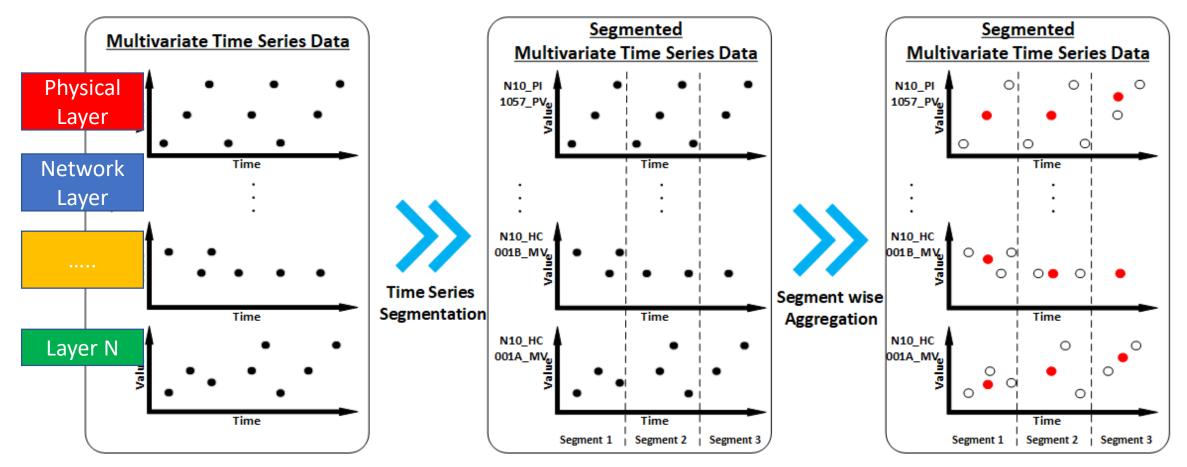
- Our proposed approach:
 - Exploiting and Fusing multiple ICS data sources (Physical layer, Network layer etc.)
 - Mining Time oriented temporal patterns that capture the temporal interaction (B. layers and variables)
 - Induce an ML based detection model that well profile normal ICS behavior over time
 - Detect Anomalous behaviors in ICS based on the profiles we have learned
- <u>Current sub goals:</u>
 - Fully understanding the relevant data that we were provided with (Otorio)
 - Exploring whether the data is enough for our needs
 - Raising our gaps\inputs regarding the data
 - Receiving further data that meets our needs
 - Designing and Developing our proposed detection model based on the updated data we'll receive

Optimal Case: Temporal Patterns Mining from Multiples Sources



Note: vision can be achieved only if all data sources (layers) will be concurrently recorded from same ICS Current Data: Temporal Patterns Mining from one source separately

Optimal Case: Temporal Segmentation from Multiples Sources



Note: vision can be achieved only if all data sources (layers) will be concurrently recorded from same ICS Current Data: Temporal Segmentation from one source separately

OTORIO - Multivariate Time Series Data (MTSD)

- Full raw logs of IT + OT (Network + Physical layer)
- Timestamped data, collected from Meptagon's physical lab environment.
- Including 16 variables derived from the I/O logs of the PLC.
- Recording duration ~5 hours
- Sampling rate ~3Hz
- 37501 Timestamped values derived from the physical layer (the S7-1200 PLC)
- The normal behavior constitutes 86% of the data, while attacks 14%
- Various attacks have been injected into the system
- Our inputs and gaps to be filled:
 - More explanations and descriptions are required regarding the data, especially the attacks conducted including duration and description
 - Data recorded from more sensors required to better Profile a Generic Normal Behavior
 - Domain knowledge regarding the values representing a normal behavior
 - Additional data with more attack scenarios
 - More layers of the system (currently data is provided is from one layer, while there are both only)
- We hope OTORIO can assist in addressing those gaps so we can apply our algorithms on it

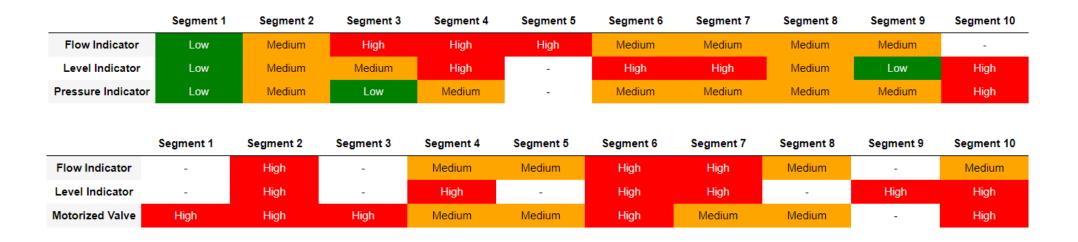
Task 12:

Temporal Explainability of ICS behavior based on

Mined Temporal Segmentations

Temporal Segmentation Explainability – Developing Exploration & Visualization Module

- By abstracting the values in each segment, we can achieve an explainability of the behavior across time (segments)
- Using a feature aggregation (features with same functionality) we map a set of features to a specific behavior.
 For example, different Flow Indicator sensors are related to Flow Indicator
- Flow Indicator indicating the flow speed in the system pipes. (e.g. in WADI: x , y, z which are the YYY sensors)
- Level Indicator indicating the water tank(s) level. (e.g. in WADI: x , y, z which are the YYY sensors)
- Pressure Indicator indicating pressure in the system pipes. (e.g. in WADI: x , y, z which are the YYY sensors)
- Motorized Valve the level of which the valve is in (out of 3). (e.g. in WADI: x , y, z which are the YYY sensors)



Experiments and Current Results

for Tasks 10 and 12

Based on WADI Dataset

WADI - Multivariate Time Series Data (MTSD)

- The WADI dataset (Ahmed et al. 2017) is a water distribution testbed related data.
- WADI consists of a total of five stages:
 - Three stages controlled by Programmable Logic Controllers (PLCs)
 - Two stages controlled via Remote Terminal Units (RTUs).
- The recorded data consists of:
 - 16 days of sampling (14 normal days only ; 2 days containing also attack scenarios)
 - 123 measurements (continuous as well as categorial) regarding the testbed:
 - Actuators (valves etc.) related
 - Sensors (pH etc.) related
 - Sampling rates: 60 Hz (each second)
 - 14 different malicious attacks on different parts (e.g. Sensors, Valves, Pumps) of the testbed
 - High class imbalance 94% of the data is "no-attack" and 6% is "attack"

At the Cyber Security Research Center WADI - Experimental Design for Classification (Outlier Detection)

Main Goal: Comparing between Temporal Patterns mining and Temporal Segmentation Mining in Outlier Detection

Data preprocessing:

- Data splitting according to the shortest attack duration (88 seconds)
- 1,980 samples: 120 are related to 1 of 14 attacks , 1880 samples are "no-attack" (Normal)
 → A class balance of 94% Vs. 6%.

Temporal Segmentation:

- Different number of segments evaluated: 1, 2, 3, 4, 5 and 10.
- Mean representation of each segment.

Machine Learning Algorithms:

• Variety of ML algorithms; RF, SVM (Linear & RBF kernels), KNN, ANN, NB, and LR.

<u>Goal:</u>

- Evaluate the detection capability of our proposed detection method
- Given new (unlabeled) time series of ICS data our method should correctly classify to "attack" or "normal"

Experimental Design:

- The learning methods were evaluated using a stratified 5 folds CV performance was averaged and reported
- Classification performance checked correctness of classifying a given new time series an attack or not.

WADI - Results - Classification (Outlier Detection)

Temporal Patterns Mining

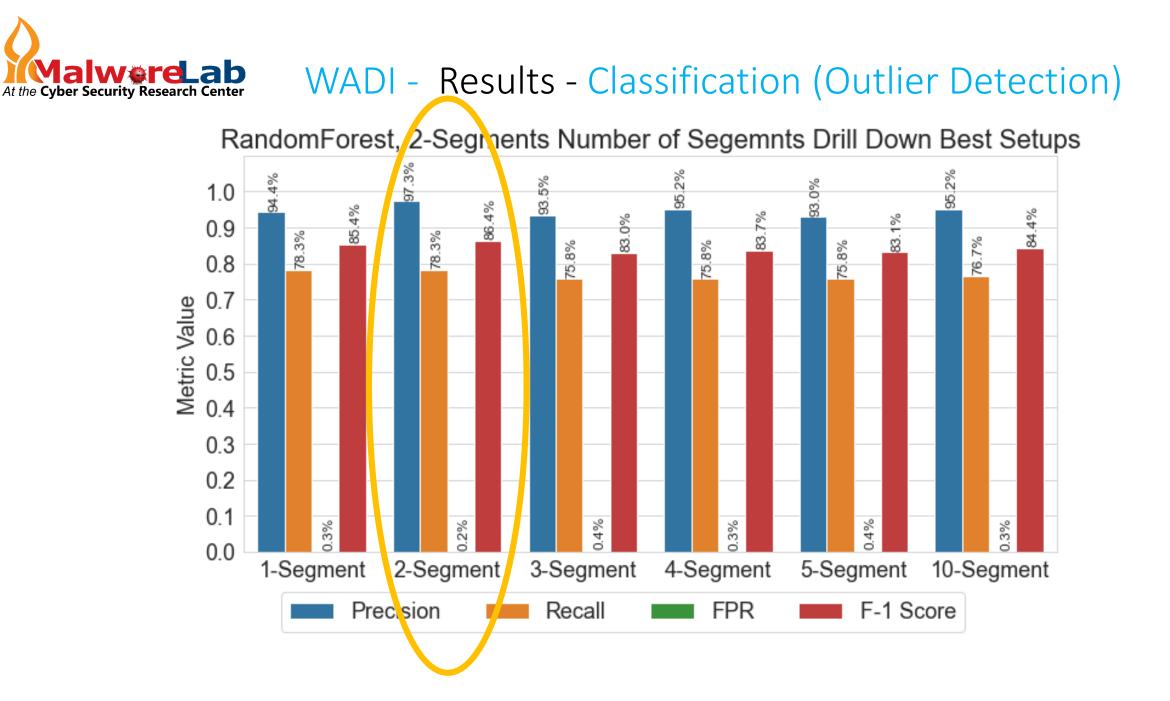
- A total of 121,500 time interval temporal patterns have been discovered
 - A total of 105,000 in the "Attack" class of which around 41,000 are exclusive A total of 80,600 in the "No-Attack" class of which around 16,800 are exclusive A total of 63,700 were mutual for both "Attack" and "No-Attacks"

Temporal Segmentation

1, 2, 3, 4, 5 and 10 segments evaluated with same time window of 88 seconds

Classification performance (best results are in red) for the task of Outlier Detection

Method	Precision	Recall (TPR)	FPR	F1-Score
KNN (k=5), All TPs, Horizontal Support – Best Precision setup	66.26%	74.43%	18.11%	75.89%
KNN (k=5), Top 100 TPs, Binary, Entropy FS – Best Recall setup	49.21%	87.4%	39.89%	52.1%
KNN (k=5), All TPs, Horizontal Support – Best F1-Score setup	66.26%	74.43%	18.11%	75 89%
RandomForest, 2-Segments – Best setup	97.31%	78.33%	0.16%	86.28%



MalwereLabWADI - Experimental Design for Anomaly Detection (Novelty Detection)

Main Goal: Comparing between Temporal Segmentation and SOTA (MADGAN) in Novelty Detection

Data preprocessing:

- Data splitting according to the shortest attack duration (88 seconds)
- 1,980 samples: 120 are related to 1 of 14 attacks, 1880 samples are "no-attack" (Normal) ٠ \rightarrow A class balance of 94% Vs. 6%.

Temporal Abstraction & Temporal Patterns mining:

- State abstraction (only) using Equal Frequency Discretization (EFD) ٠
- A vertical support of 50% ٠
- Mining Temporal Patterns of up to size 3 (including) ٠

Machine Learning Algorithms:

- Feature representation using Horizontal Support, Binary
- Feature selection using: Entropy, Gini; ٠
- Selecting different amounts of temporal patterns: 25, 50, 100, 200, 300, 400, 500 and All ٠
- Variety of ML algorithms; RF, SVM (Linear & RBF kernels), KNN, ANN, NB, and LR. ٠

Goal:

- Evaluate the detection capability of our proposed detection method
- Given new (unlabeled) time series of ICS data our method should correctly classify to "attack" or "normal" ٠

Experimental Design:

- The learning methods were evaluated using a stratified 5 folds CV performance was averaged and reported ٠
- Classification performance checked correctness of classifying a given new time series an attack or not. ٠

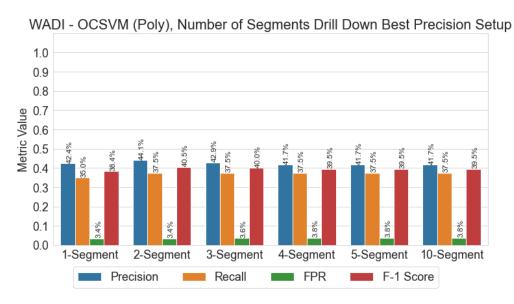
Temporal Segmentation

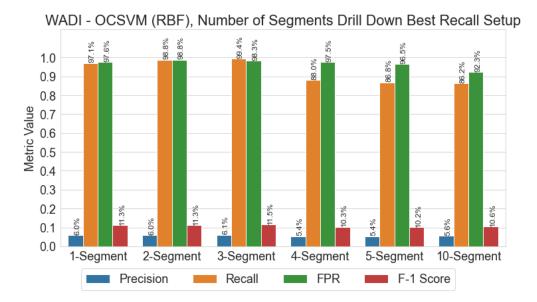
- 1, 2, 3, 4, 5 and 10 segments evaluated
- Sliding window of 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 seconds

Anomaly detection performance (best results are in red)

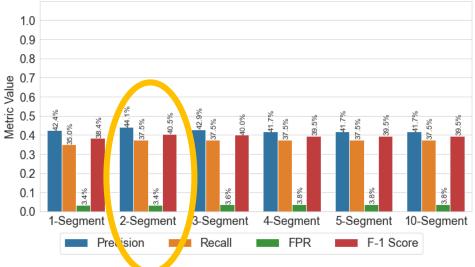
Method	Precision	Recall (TPR)	FPR	F1-Score
OCSVM (Poly), 2-Segments, 300s Window – Best Precision setup	44.11%	37.5%	3.4%	40.5%
OCSVM (RBF), 3-Segments, 60s Window – Best Recall setup	6.1%	99.99%	98.3%	11 5%
OCSVM (Poly), 2-Segments, 300s Window – Best F1-Score setup	44.11%	37.5%	3.4% 🤇	40.5%
MAD-GAN (Li et al. 2019) – Best Precision setup	46.98%	24.58%	NA	32%
MAD-GAN (Li et al. 2019) – Best Recall setup	6.46%	99.99%	NA	12%
MAD-GAN (Li et al. 2019) – Best F1-Score setup	41.44%	33.92%	NA 🤇	37%

WADI - Segment Size Drill Down Results





WADI - OCSVM (Poly), Number of Segments Drill Down Best F-1 Score Setup



WADI - Temporal Segmentation Explainability

Highlighting and visualizing segments time, one can easily explain temporal behaviors.

		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8	Segment 9	Segment 10
Attack	Flow Indicator	Low	Low	-	Medium	Medium	High	Medium	Low	Low	High
	Level Indicator	-	Low	High							
	Pressure Indicator	Medium	Medium	Medium	Medium	Medium	Medium	Low	Low	-	High

		Segment 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8	Segment 9	Segment 10
	Flow Indicator	Low	Medium	High	High	High	Medium	Medium	Medium	Medium	-
No-Attack	Level Indicator	Low	Medium	Medium	High	-	High	High	Medium	Low	High
	Pressure Indicator	Low	Medium	Low	Medium	-	Medium	Medium	Medium	Medium	High

Cooperation and Commercialization

- Initial Cooperation With OTORIO based on the data they have provided
- Commercialization once we have more data, we will be able to better understand the relative advantage of our proposed solutions and its commercialization possibilities.