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• Prior works are limited because it is infeasible to generate complete 
normal profiles for realistic sized industrial control system

• We propose to inform these machine learning model with knowledge 
of the physical process to produce model that can generalize to parts 
of the system not captured by training data 

• Attacks would have to match both the training data and the physical 
constraints to avoid detection 

Proposed Approach: Machine Learning Informed by 
Physical Domain Knowledge 
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Proposed Framework 
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• Proposed framework informs machine learning models with physical domain 
knowledge 

• Dragon demonstrates how physical properties can improve models
• Proposed work expands Dragon’s detection abilities to be detect unknown attack 

types 
• This is achieved by informing anomaly detection models with system dynamics 

equations 



Preliminary Work:

DRAGON: Deep Reinforcement 
Learning for Autonomous Grid 
Operation and Attack Detection

(ACSAC 2022)



Reliability 
• Manual and expert systems based 

approaches [1] do not scale to 
realistic size systems 

• Prior autonomous operations 
research [2, 3] does not consider 
realistic threat models where attacks 
inject commands and spoof sensor 
measurements 

Detection 
• Prior anomaly detection systems [4, 5] 

can be bypassed by sophisticated 
attackers who use standard protocols 
and blend into normal behavior 

• Specification based approaches [6] do 
not scale to realistic sized systems 

Related Work 
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• Reliability can be achieved by ensuring the system remains in a stable state 
• There are heuristics about the power grid that describe a stable state
• Although it can be challenging to label states with the best commands, we can 

score states based on reliability and learn actions that result in reliable states
• To detect attacks, labeling states to train can be challenging in adversarial 

environments 
• Instead, reinforcement learning can learn to detect attacks with limited 

knowledge 

Insights 
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Dragon Overview 
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Dragon Workflow
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• Attacker can disconnect power lines
• The attacker can also inject false measurements into grid observations 

Threat Model
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Operation Agent 
Observation 
• Load, generator, line attributes 

Actions 
• Grid topology modifications

Rewards to represent reliability 
• All loads should receive sufficient 

power 
• Lines obey their thermal limits
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Detection Component
Observation 
• Previous and current grid observations 
• Operator’s actions

Actions
• Detect attack
• Continue normal operation

Rewards
• Penalize false positives and false negatives
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Proposed Work: 
Physics Informed 
Attack Detection 



• Sophisticated attacks frequently employ novel exploits and 
tools 

• Previous work that uses signature-based detection cannot 
detect these unknown attacks 

• Anomaly detection works with only normal data but requires 
a complete normal profile to avoid false positives 

Motivation
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• The physical component of an ICS evolves according to known physics 

• This physics can be sometimes represented by equations that relate previous 

states to the current state 

• Such information can be used to supplement incomplete training datasets

• System equations provide a mechanism to fill in the missing parts of an 

incomplete training dataset 

• If a normal state does not fit the training dataset, it should still follow the system 

equations and not be classified as an attack 

Our Insights 
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Overview 
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• PINNs try to capture non-linear functions where the data follows known physical 
laws

• Frequently applied when a small set of training data exists 
• The physical laws are encoded into additional loss functions

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential 
equations,” Journal of Computational physics,vol. 378, pp. 686–707, 2019.
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Physics Informed Neural Network (PINN) 
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• Each system equation is translated to a network loss term
• Example: System identification equation 
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• Given this equation relating state variables x and y, we produce the following 
network loss 
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• As the loss decreases, the predicted state follows the equation more accurately 

Training With System Equations
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Method True Positive 
Rete

False Positive 
Rate

F1 Score Precision Detection Delay

Physics 
informed

74.96 7.5 65.33 57.90 20

Invariants 73.06 7.62 63.97 56.90 54
LSTM 70.97 16.78 48.45 36.78 1306
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Initial Results – SWaT Dataset

• First case study was on the standard SWaT dataset 
• Our physics informed solution outperforms the NDSS19 invariant paper and a 

standard LSTM



• A framework to detect sophisticated ICS attacks based on 

physical domain knowledge and deep learning algorithms
• Data and software will be made available to members of the consortium, as 

well as the broader research and industry communities (when appropriate)

• Use power grid as the real-world application for the proposed 

research and validation

Potential Impacts
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