Achieving Trustworthy Industrial Control Systems Using Data-Driven Models Informed by Physical Domain Knowledge

Wenke Lee

Proposed Approach: Machine Learning Informed by Physical Domain Knowledge

- Prior works are limited because it is infeasible to generate complete normal profiles for realistic sized industrial control system
- We propose to inform these machine learning model with knowledge of the physical process to produce model that can generalize to parts of the system not captured by training data
 - Attacks would have to match both the training data and the physical constraints to avoid detection

Proposed Framework

- Proposed framework informs machine learning models with physical domain knowledge
- Dragon demonstrates how physical properties can improve models
- Proposed work expands Dragon's detection abilities to be detect unknown attack types
- This is achieved by informing anomaly detection models with system dynamics equations

3

Preliminary Work:

DRAGON: Deep Reinforcement Learning for Autonomous Grid Operation and Attack Detection (ACSAC 2022)

Related Work

Reliability

- Manual and expert systems based approaches [1] do not scale to realistic size systems
- Prior autonomous operations research [2, 3] does not consider realistic threat models where attacks inject commands and spoof sensor measurements

Detection

- Prior anomaly detection systems [4, 5] can be bypassed by sophisticated attackers who use standard protocols and blend into normal behavior
- Specification based approaches [6] do not scale to realistic sized systems

[1] A. Marot, B. Donnot, S. Tazi, and P. Panciatici, "Expert system for topological remedial action discovery in smart grids," 2018.
[2] T. Lan et al., "Ai-based autonomous line flow control via topology adjustment for maximizing time-series atcs," in 2020 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2020, pp. 1–5.

[3] A. Marot et al., "Learning to run a power network challenge: A retrospective analysis," arXiv preprint arXiv:2103.03104, 2021.

- [4] S. Ponomarev, Intrusion Detection System of Industrial Control Networks using Network Telemetry. Louisiana Tech University, 2015
- [5] H. R. Ghaeini, D. Antonioli, F. Brasser, A.-R. Sadeghi, and N. O. Tippenhauer, "State-aware anomaly detection for industrial control systems," in Proceedings of the Annual ACM Symposium on Applied Computing, 2018, pp. 1620–1628.
- [6] D. Formby and R. Beyah, "Temporal execution behavior for host anomaly detection in programmable logic controllers," IEEE Transactions on Information Forensics and Security, vol. 15, pp. 1455–1469, 2019.

5

Insights

- Reliability can be achieved by ensuring the system remains in a stable state
- There are heuristics about the power grid that describe a stable state
- Although it can be challenging to label states with the best commands, we can score states based on reliability and learn actions that result in reliable states
- To detect attacks, labeling states to train can be challenging in adversarial environments
- Instead, reinforcement learning can learn to detect attacks with limited knowledge

Dragon Overview

Threat Model

- Attacker can disconnect power lines
- The attacker can also inject false measurements into grid observations

Operation Agent

Observation

Actions

• Load, generator, line attributes

Grid topology modifications

Rewards to represent reliability

- All loads should receive sufficient power
- Lines obey their thermal limits $-\sum_{l\in\mathcal{L}}\frac{power_l}{thermal_limit_l}$

$$r = c_1 \frac{\sum_{l \in \mathcal{LD}} |path_{gen \sim l}|}{|\mathcal{LD}|} - c_2 \sum_{l \in \mathcal{L}} \frac{power_l}{thermal_limit_l}$$

10

Detection Component

Continue Continue Attack Start No Under Attack Attack Attack End Detect Detect Attack End Attack Detected 11

Environment

Observation

- Previous and current grid observations
- Operator's actions

Actions

- Detect attack
- Continue normal operation

Rewards

• Penalize false positives and false negatives

Proposed Work: Physics Informed Attack Detection

Motivation

- Sophisticated attacks frequently employ novel exploits and tools
- Previous work that uses signature-based detection cannot detect these unknown attacks
- Anomaly detection works with only normal data but requires a complete normal profile to avoid false positives

Our Insights

- The physical component of an ICS evolves according to known physics
- This physics can be sometimes represented by equations that relate previous states to the current state
- Such information can be used to supplement incomplete training datasets
- System equations provide a mechanism to fill in the missing parts of an incomplete training dataset
- If a normal state does not fit the training dataset, it should still follow the system equations and not be classified as an attack

Physics Informed Neural Network (PINN)

- PINNs try to capture non-linear functions where the data follows known physical laws
- Frequently applied when a small set of training data exists
- The physical laws are encoded into additional loss functions

M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations," Journal of Computational physics, vol. 378, pp. 686–707, 2019.

Training With System Equations

- Each system equation is translated to a network loss term
- Example: System identification equation

$$y_{n+1} = \sum_{i=0}^{\kappa} a_i y_{n-i} + \sum_{i=0}^{\kappa} b_i x_{n-i}$$

1.

 Given this equation relating state variables x and y, we produce the following network loss

$$L(\hat{y}_{n+1}) = \left| \hat{y}_{n+1} - \sum_{i=0}^{k} a_i y_{n-i} + \sum_{i=0}^{k} b_i x_{n-i} \right|$$

• As the loss decreases, the predicted state follows the equation more accurately

Initial Results – SWaT Dataset

Method	True Positive Rete	False Positive Rate	F1 Score	Precision	Detection Delay
Physics informed	74.96	7.5	65.33	57.90	20
Invariants	73.06	7.62	63.97	56.90	54
LSTM	70.97	16.78	48.45	36.78	1306

- First case study was on the standard SWaT dataset
- Our physics informed solution outperforms the NDSS19 invariant paper and a standard LSTM

Potential Impacts

- A framework to detect sophisticated ICS attacks based on physical domain knowledge and deep learning algorithms
 - Data and software will be made available to members of the consortium, as well as the broader research and industry communities (when appropriate)
- Use power grid as the real-world application for the proposed research and validation

