Cybersecurity Technology for Critical Power Infrastructure Al-Based Centralized Defense and Edge Resilience





BIRD Workshop at ASU October 9 – 11, 2023

#### Task 7: Practical Deployment Architecture for Alerting Malware Activity in ICS/SCADA Networks

Dr. Wenke Lee, Moses Ike (Presented by <u>Bo Feng</u>) Georgia Institute of Technology

### Background

Industrial Control Systems (ICS) Operational Technology (OT) Cyber-Physical Systems (CPS)

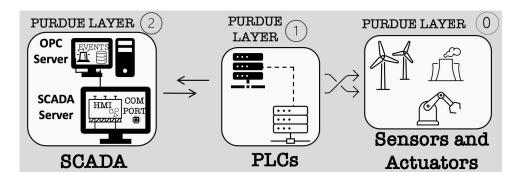


**Power Substations** 



Water Treatment Plants




Supervisory Control and Data Acquisition (SCADA) Systems



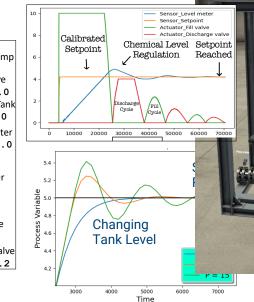
Programmable Logic Controllers (PLC)



**Nuclear Plants** 



The Purdue ICS Network Architecture




## (Control) Cause and (Physical) Effect

Unlike IT, OT has Cause and Physical Effect

- Control inputs result in physical actuation
  - Control inputs are generated by a software logic
  - Physical actuation are governed by the "Physics" of devices (physical process), and measured by sensors





## **Two (2) Types of Control**

# Basic Control ~1 - 10ms (done by PLCs)

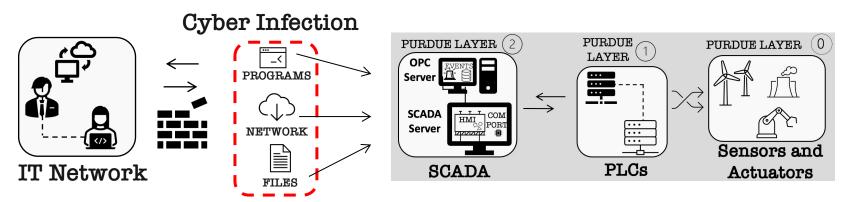


| "PI<br>"PI | D I<br>D D<br>ID | 3    | "1 | &<br>Cump | 0" >=1    | "Valve    |
|------------|------------------|------|----|-----------|-----------|-----------|
| :::::      |                  |      |    | lve       |           | s         |
| Network    | cor              | nmen | t= |           |           | · · · · · |
| 0          | A                | ID   | 1  |           |           |           |
| 1          |                  | ID   |    |           |           |           |
| 2          | A                | ID   | 3  |           |           |           |
| 3          |                  |      |    | 0         | "Pump.0"  | Q0        |
| 4          |                  |      |    | 0         | "Valve.1" | Q0        |
| 5          |                  |      |    | s         | "Valve.0" | Q0        |
| "Pump.(    |                  | Q0 . | 3  |           | BOOL      |           |
| "Valve.    | 1"               | Q0 . | 1  |           | BOOL      |           |
|            | 0"               |      |    |           | BOOL      |           |

## Supervisory Control ~1000ms (done by SCADA)



Supervisory Control and Data Acquisition (SCADA) Systems


| scad            | <b>abr</b>             |                                |                  |                                            |
|-----------------|------------------------|--------------------------------|------------------|--------------------------------------------|
| Event detecto   | rs 🧐                   | Event hand                     |                  |                                            |
| Туре            | Change 🔻               |                                | Туре             | Set point 🗸 🦃                              |
| de Type         | No change              | Export                         | ID (XID)         |                                            |
| Export ID (XID) | PED_333649             | Target                         | Alias<br>Chemica | Open Supply Valve<br>al Dosing - O_supplyV |
| Alias           | Intake Valve Did Not ( | Active action                  | Set to s         | tatic value 🗸                              |
| Alarm level     | Information 🗸 ┩        | Value to set                   | 1                |                                            |
| Duration        | 5 second(s)            | nactive action<br>Value to set | Set to s         | tatic value 🗸                              |

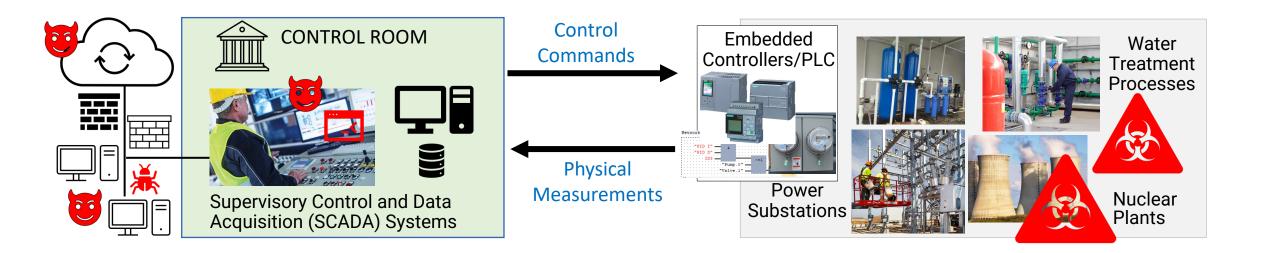


## Threat Model (We assume SCADA is compromised)

#### Modern ICS is <u>no longer</u> "air-gapped".... prone to <u>cyber</u> infection

- SCADA connects to the IT network and internet, utilizes cyber resources
- Modern attacks infect SCADA to disrupt physical processes




#### A note on SCADA Analysis

• Network Traffic vs. Host Execution

THREAT MODEL SCADA is compromised or Attacker resides in the SCADA Systems, and aims to cause physical disruption or damages

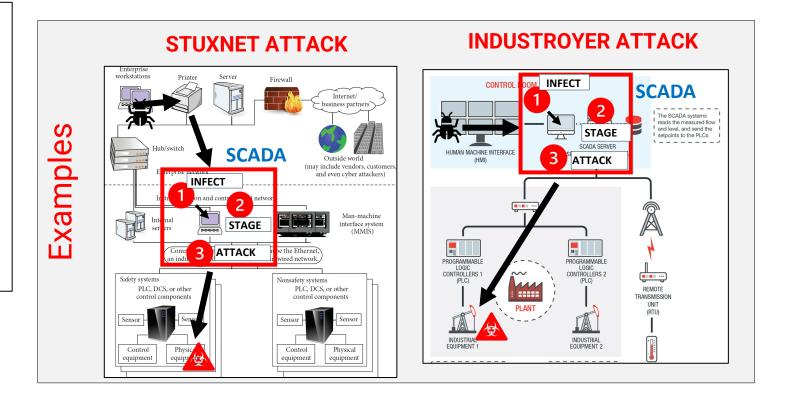


## Malware Attacks are a big problem in SCADA/ICS Networks



Software-based systems execute physical domain operations SEMANTIC SAP Physical processes, actuators, sensors exhibit continuous "physics" behavior

## **Modern ICS/SCADA Host Attack Challenges**

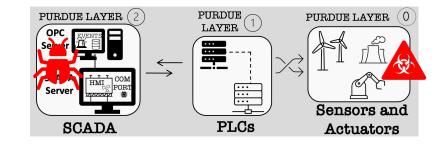

#### **INFECT SCADA -> STAGE PAYLOAD -> ATTACK PROCESSES**

#### PAST MALWARE ATTACKS

#### (LAUNCHED VIA THE SCADA HOST)

- 2010 Stuxnet: Iran centrifuge system
- 2014 Havex (various organizations)
- 2016/2022 Industroyer: Ukrainian Power
- 2021 Oldsmar: Water Treatment Plant
- 2021 Colonial Attack: Oil and gas Pipeline






## **Limitations of Existing ICS Defenses**

- Physical Measurements: Flag anomalous sensor readings at runtime. First learns the normal <u>"Physics" of the ICS process</u>
  - High false alarms due to benign physical noise, faults, and errors
  - Cannot validate flagged anomalies
- **PLC Defenses:** Prevent PLC logic/code modification
  - A SCADA adversary can modify PLC I/Os without touching its logic
- Host-based (SCADA): Flag anomalous host API calls at runtime
  - Attackers also use normal tools/API calls. Requires knowledge of operational events or what triggers SCADA
  - Cannot know if anomalous APIs cause negative physical effects

#### Our Insight: Correlate cause and effect via SCADA-Physics Anomaly Correlation

- Start from SCADA, where the attack is launched from, and find anomalies
- Then use Physics to corroborate (or filter) detected SCADA anomalies



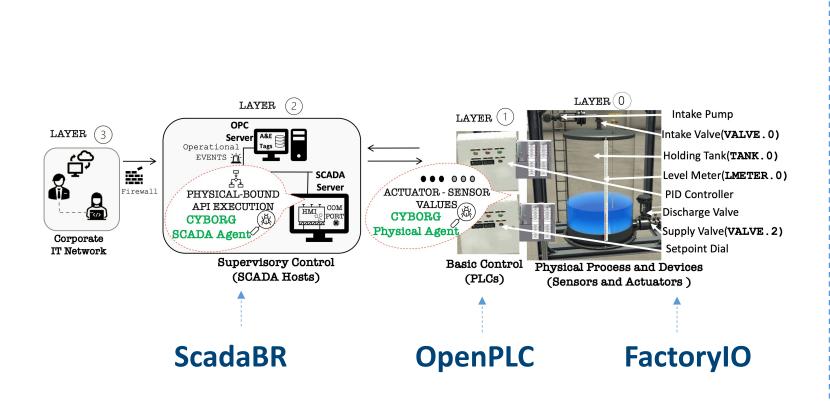


## SCADA-Physics Anomaly Correlation: Summary/Roadmap

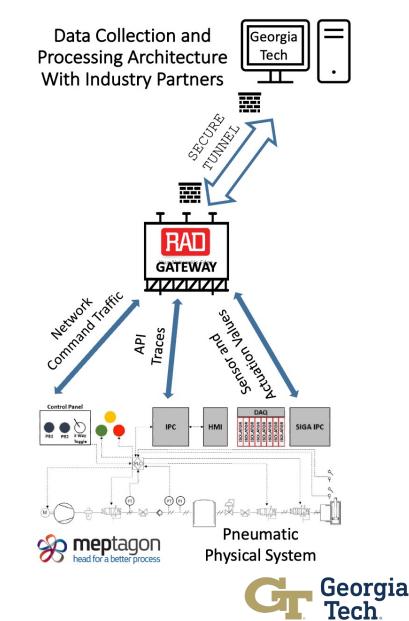
#### • SCADA Host Analysis

- Use SCADA operational events to Induce SCADA "Physical-bound" API Calls
- Analyze their statistical (Frequency and Timing) dependencies. Model SCADA operational semantics

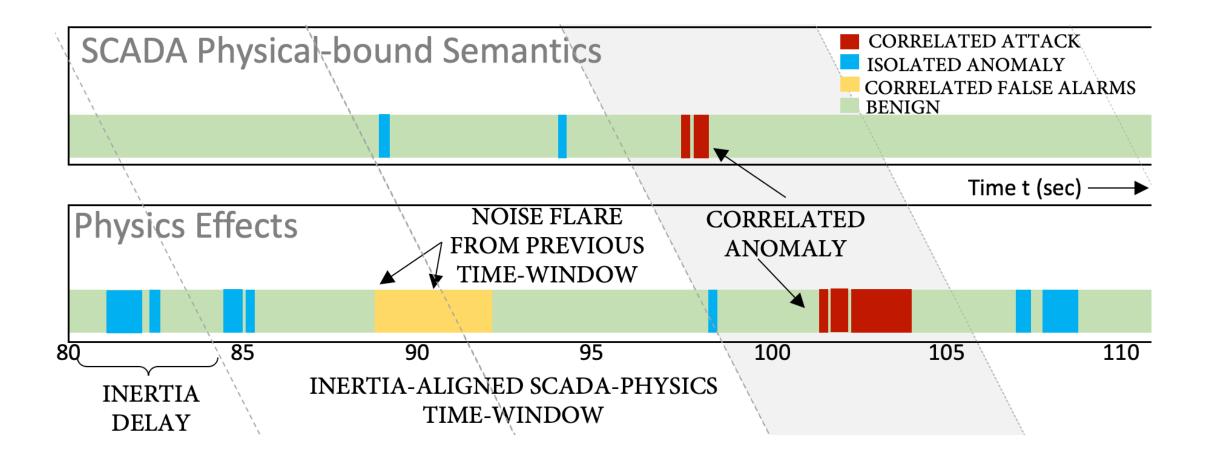
#### • Physics Analysis


- Use sequence-based neural network to learn normal sensor/actuator time series
- Apply Transformer-based Autoencoders to rank important physics relationships
- Leverage "Inertia" to inform effect neural network sequence length.

#### • SCADA-Physics Correlation


- Align the anomaly correlation time-window (i.e., Physics lag behind SCADA due to inertia)
- Anomalies that show up at both behaviors, is a strong indicator of an actual attack
  - In practice, we use Physics anomalies to filter or corroborate SCADA anomalies
- False positives: Physics anomalies that permeate from previous time windows before SCADA anomaly



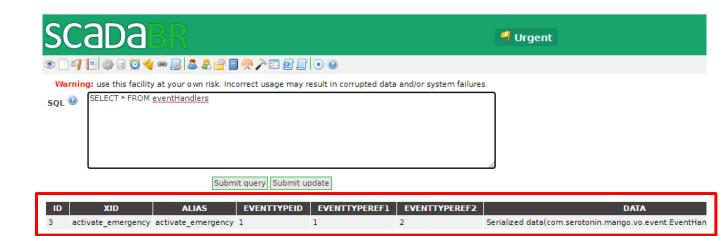

#### **SCADA-Physics Anomaly Correlation: Example Deployment**



Tools used in our test environment



## **SCADA-Physics Anomaly Correlation**





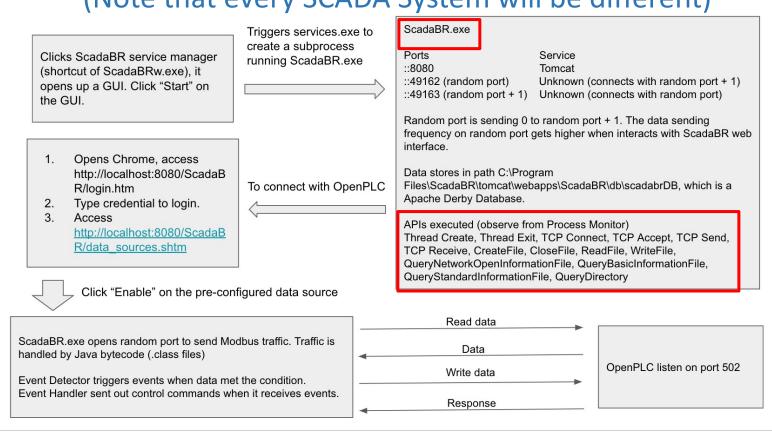

#### **SCADA Operation in ScadaBR**

| SCadabr                                                                      |                       | 4 Urgent                                                                                |
|------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|
| o 🗋 🗐 📃 🌼 🗊 💆 🍕 📟 📠 🚨 🖧                                                      | ピ 🗐 🙊 🎤 🗉 🕹           |                                                                                         |
| Warning: use this facility at your own ris<br>SQL  SELECT * FROM dataSources | sk. Incorrect usage m | nay result in corrupted data and/or system failures.                                    |
| [                                                                            | Submit query Subm     | nit update                                                                              |
| ID XID NAME D                                                                | ATASOURCETYPE         | DATA                                                                                    |
| 1 DS_132410 OpenPLC_Windows 3                                                |                       | Serialized data(com.serotonin.mango.vo.dataSource.modbus.ModbusIpDataSourceVO@5f1ee933) |

#### **View Connected PLCs**



#### View Configured Events and Event Handlers




#### **Analysis of SCADA Host Execution**



- Analyze "Physical-bound" API calls (not all API calls)
  - API call execution used to control the physical world
  - Must first identify the appropriate SCADA software process (done once)

#### Dissecting SCADA Internal Host Interactions (Note that every SCADA System will be different)





#### **Analysis of SCADA Host Execution**

Process Monitor - Sysinternals: www.sysinternals.com



| ,,,,,,,                                    |                 |                         |                                       |
|--------------------------------------------|-----------------|-------------------------|---------------------------------------|
| <u>File Edit Event Filter Tools Option</u> | ns <u>H</u> elp |                         |                                       |
| 🖻 🔚 [ ] 🗟 💼 🝸 🗖 (                          | o 品 & /         | ◪◧◙◪◚                   | ProcMon                               |
| └/ ┌──   └ ┘ └♡ 🛄   Ŭ 🕑 💙                  | 9 66 7 /~       |                         |                                       |
| Time of Day Process Name                   | Operation       | Path                    |                                       |
| 5:09:56.1605069 PM 🐂 ScadaBR.exe           | CloseFile       | C:\Program Files\ScadaB | R\tomcat\webapps\ScadaBR              |
| 5:09:56.1606477 PM 💊 ScadaBR.exe           | CreateFile      |                         | R\tomcat\webapps\ScadaBR\db           |
| 5:09:56.1606810 PM 💊 ScadaBR.exe           | QueryDirectory  | C:\Program Files\ScadaB | R\tomcat\webapps\ScadaBR\db\scadabrDI |
| 5:09:56.1607142 PM 🍾 ScadaBR.exe           | CloseFile       | C:\Program Files\ScadaB | R\tomcat\webapps\ScadaBR\db           |
| 5:09:56.1607957 PM 🍖 ScadaBR.exe           | CreateFile      | C:\                     |                                       |
| 5:09:56.1608279 PM 🍖 ScadaBR.exe           | QueryDirectory  | C:\Program Files        |                                       |
| 5:09:56.1608605 PM 🍖 ScadaBR.exe           | CloseFile       | C:\                     |                                       |
| 5:09:56.1610413 PM 🍖 ScadaBR.exe           | CreateFile      | C:\Program Files        |                                       |
| 5:09:56.1610738 PM 🍖 ScadaBR.exe           | QueryDirectory  | C:\Program Files\ScadaB | R                                     |
| 5:09:56.1611080 PM 🍖 ScadaBR.exe           | CloseFile       | C:\Program Files        |                                       |
| 5:09:56.1612468 PM 🍖 ScadaBR.exe           | CreateFile      | C:\Program Files\ScadaB |                                       |
| 5:09:56.1612788 PM 🍖 ScadaBR.exe           | QueryDirectory  | C:\Program Files\ScadaB |                                       |
| 5:09:56.1613112 PM 🍖 ScadaBR.exe           | CloseFile       | C:\Program Files\ScadaB |                                       |
| 5:09:56.1614306 PM 🍖 ScadaBR.exe           | CreateFile      | C:\Program Files\ScadaB |                                       |
| 5:09:56.1614625 PM 📎 ScadaBR.exe           | QueryDirectory  | C:\Program Files\ScadaB |                                       |
| 5:09:56.1614956 PM 🍖 ScadaBR.exe           | CloseFile       | C:\Program Files\ScadaB |                                       |
| 5:09:56.1616152 PM 🔥 ScadaBR.exe           | CreateFile      | C:\Program Files\ScadaB |                                       |
| 5:09:56.1616471 PM 🍖 ScadaBR.exe           | QueryDirectory  |                         | R\tomcat\webapps\ScadaBR              |
| 5:09:56.1616797 PM 🍖 ScadaBR.exe           | CloseFile       | C:\Program Files\ScadaB |                                       |
| 5:09:56.1617996 PM 🍖 ScadaBR.exe           | CreateFile      |                         | R\tomcat\webapps\ScadaBR              |
| 5:09:56.1618316 PM 🍖 ScadaBR.exe           | QueryDirectory  |                         | R\tomcat\webapps\ScadaBR\db           |
| 5:09:56.1618643 PM 🍖 ScadaBR.exe           | CloseFile       |                         | R\tomcat\webapps\ScadaBR              |
| 5:09:56.1620062 PM 🍖 ScadaBR.exe           | CreateFile      |                         | R\tomcat\webapps\ScadaBR\db           |
| 5:09:56.1620387 PM ScadaBR.exe             | QueryDirectory  |                         | R\tomcat\webapps\ScadaBR\db\scadabrDI |
| 5:09:56.1620710 PM ScadaBR.exe             | CloseFile       | C:\Program Files\ScadaB | R\tomcat\webapps\ScadaBR\db           |
| 5:09:56.1629055 PM 🍖 ScadaBR.exe           | Create Create   |                         |                                       |
| 5:09:56.1640740 PM ScadaBR.exe             | TCP Send        | c0a8:cc85::8d1:4711:80f |                                       |
| 5:09:56.1640889 PM ScadaBR.exe             | TCP Receive     | c0a8:cc85::8d1:4711:80f | a.ffff:1088 -> leo-PC:502             |
| 5:09:56.1717575 PM 📎 ScadaBR.exe           | CreateFile      | C:\                     |                                       |
| 5:09:56.1718441 PM 🍖 ScadaBR.exe           | QueryDirectory  | C:\Program Files        |                                       |

| ie <u>E</u> dit <u>V</u> iew Filter <u>T</u> o | ools <u>W</u> indow | Help |                                         |                      |        |                       |           |             |                                |                 | APIN                                  |                  |
|------------------------------------------------|---------------------|------|-----------------------------------------|----------------------|--------|-----------------------|-----------|-------------|--------------------------------|-----------------|---------------------------------------|------------------|
| • 🖬 🖻 🔿 🖂 🖏                                    |                     | 4    | 💷 🛠 🛞 l 🙆 🛃                             | -                    |        |                       |           |             |                                |                 |                                       |                  |
|                                                |                     |      |                                         | ▼ 8 X                | Summar | ry   426 calls        | 606 KB us | ed   Scadi  | BR.exe                         |                 |                                       |                  |
| 🔹 🛃 🗙 🐴 🗍 All Module                           | es 💌                | 8    | • 🎿 📑 🐵 🛰                               | 🚰 i 🗊                | ⇒ 33   | 23 🗣 🗉                | - 1000    | - 🐴 🖡       | 4 • 🗊                          |                 |                                       |                  |
| . Windows Network                              | ting (WNet)         |      | C:\Program Files                        | ScadaBR\tomcat\bin\S |        | Time of Day           | Thread    | Module      | API                            |                 | c                                     | R *              |
| . Windows Sockets                              | 2                   |      |                                         |                      | 163    | 7:36:21.313 PM        | 458       | nio.dll     | WSASend (4464, 0x              | 000000030a9e5c  | 0, 1, 0x0000000030a9e608, 0, NULL, N  |                  |
| 🐵 🔲 📗 Registered                               |                     |      |                                         |                      | 164    | 7:36:21.334 PM        | 424       | nio.dll     |                                |                 | 3. 1. 0x000000002fa5ed58. 0x0000000   |                  |
| 🗄 🛄 🧊 Fwpucint.dll                             |                     |      |                                         |                      | 165    | 7:36:21.334 PM        | 458       | nio.dll     | WSASend ( 4464, 0x             | 0000000030a9e5c | 0, 1, 0x0000000030a9e608, 0, NULL, N. | . 0              |
| 😑 🔲 🎦 Mswsock.dll                              |                     |      |                                         |                      | 166    | 7:36:21.392 PM        | 424       | nio.dll     | WSARecv (4464, 0x)             | 00000002fa5ed18 | 3, 1, 0x000000002fa5ed58, 0x0000000   | . 0              |
| - AcceptEx                                     |                     |      |                                         |                      | 167    | 7:36:21.402 PM        | 460       | nio.dll     | WSASend (4464, 0x              | 0000000030eee50 | 0, 1, 0x0000000030eee548, 0, NULL, N. | 0                |
| EnumProto                                      |                     |      |                                         |                      | 168    | 7:36:21.442 PM        | 424       | nio.dll     | WSARecv ( 4464, 0x)            | 00000002fa5ed18 | 3, 1, 0x000000002fa5ed58, 0x0000000   | . 0 +            |
| - GetAcceptE                                   |                     | 1    |                                         | +                    | ۲.     |                       |           |             | 1                              |                 |                                       | - F              |
| - GetAddress                                   |                     |      |                                         |                      |        |                       |           |             |                                |                 |                                       | - 0. ×           |
| - GetAddress                                   | sByNameW            |      | Type                                    | Name                 |        | Pre-Call Value        |           |             | Post-Call Value                | [ ^             |                                       | • <sup>8</sup> • |
| - 🔲 🔝 GetNameBy                                |                     | 1    | SOCKET                                  | Ø 5                  |        | 4464                  |           |             | 4464                           |                 | 0000 00 1f 00 00 00                   | ~                |
| GetNameBu                                      | /TvoeW *            | 2    | LPWSABUE                                |                      |        | 0x000000030a9e5       | 20        |             | 0x000000030x9x5x0              |                 | 0005 06 01 01 03 20                   |                  |
| Capture 🖸 Display 📑 Ext                        |                     |      | WSABUF I dwB                            | 8 0                  |        | [ ( len = 12, buf = ) |           | 172462/2011 | [{len = 12, buf = 0x00000000   | 2462/2011       | 000a 00 04                            |                  |
| Lapture Display   Ext                          |                     |      | WSABUF                                  | E \$ [0]             |        | { len = 12, buf = 0   |           |             | { len = 12, buf = 0x00000002   |                 |                                       |                  |
| ning Processes                                 | <b>▼</b> 8 ×        | -    | u long                                  | e len                |        | 12                    |           |             | 12                             |                 |                                       |                  |
| • 🔛 📑 📑                                        |                     | -    | char*                                   | ∃ ∳ buf              |        | 0x000000023fb3c       |           |             | 0x000000023fb3c30              |                 |                                       |                  |
| cess 👷 Pl                                      | ID ^                | ١.   | DWORD                                   | dwBufferCount        |        | 1                     | 50        |             | 1                              |                 |                                       |                  |
|                                                | 084                 |      |                                         |                      |        | -                     |           |             | 1<br>0x000000030x9+608         |                 |                                       |                  |
| -                                              | 524                 | 4    |                                         | IpNumberOfByte       |        | 0x000000030a9e6       | 00        |             |                                |                 |                                       |                  |
|                                                |                     |      | DWORD                                   |                      |        | 0                     |           |             | 12                             | _               |                                       |                  |
|                                                | 596                 | 5    | DWORD                                   | 🧼 dwFlags            |        | •                     |           |             | 0                              |                 |                                       | -                |
| vm3dservice.exe 1/                             | 620                 |      |                                         |                      |        |                       |           |             |                                | Outout          | 1.                                    | - 3 ×            |
| vmtoolsd.exe 1                                 | 644                 | _    |                                         |                      |        |                       |           |             | • # /                          | Variables:      | 19678                                 |                  |
| vmtoolsd.exe 2                                 | 180                 |      | Module                                  | Address              |        | Offset                | Loca      |             |                                | DLLs:           | 19678                                 | ^                |
| wininit.exe 4                                  | 16                  | 1    | nio.dll                                 | 0x0000071ef8de44     |        | 0x4412                | Java      | sun_nio_ch_ | SocketDispatcher_write0 + 0x76 | APIs:           | 15885                                 |                  |
|                                                |                     | 2    | 0x0000000000000000000000000000000000000 |                      |        | 0x116553a0            |           |             |                                | COM Interf      |                                       | E                |
|                                                | -                   | 3    | 0x000000000000000                       |                      |        | 0x478                 |           |             |                                |                 |                                       | -                |
| j wmiPrvst.exe 2                               | 532                 | 4    | 0x0000000000000000000000000000000000000 | 0 0x000000030a9e     | 660    | 0x30a9e660            |           |             |                                |                 |                                       |                  |

| Process Monitor - C:\Users\tingwei\Deskto   | p\ProcessMonitor\compa | re_read_write_automatic.PML                                |
|---------------------------------------------|------------------------|------------------------------------------------------------|
| <u>File Edit Event Filter Tools Options</u> |                        | ProcMon                                                    |
| 🖻 🗄 [] 🗟 🔂 🔟 🛛 🖉 🧕                          | ) 品 🗲 🔎 🏹              |                                                            |
| Time of Day Process Name                    | Operation              | Path                                                       |
| 11:58:00.6185077 AM 🔥 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:00.6426596 AM 🍾 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:10.6137832 AM 🍾 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:10.6428279 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:20.6135878 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:20.6436740 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:30.6150225 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:30.6440060 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:58:30.7325448 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:30.7487234 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:40.6136909 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:40.6446850 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:40.7341902 AM 🍖 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:50.6132060 AM 🐚 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:50.6455823 AM 🔥 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:58:50.6953501 AM ScadaBR.exe             | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:59:00.6136827 AM ScadaBR.exe             | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |
| 11:59:00.6456876 AM ScadaBR.exe             | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa:ffff:1229 -> leo-PC:502 |
| 11:59:10.6131961 AM 🔥 ScadaBR.exe           | TCP Send               | c0a8:cc85:740d:385d:3831:b711:80fa.ffff:1229 -> leo-PC:502 |

| C<br>File                                     | ompare_read_write_2_<br>Edit View Go | automatic.pcapng<br>Capture Analyze Stati: | tics Telephony Wireless | Tools Helj  | p                   |                | ۱۸/:       |                         |  |  |  |
|-----------------------------------------------|--------------------------------------|--------------------------------------------|-------------------------|-------------|---------------------|----------------|------------|-------------------------|--|--|--|
|                                               | 🔳 🖉 🛞 🚺                              | 🔀 🛅 🍳 🗢 🔿 😫                                | T 🕹 📃 🗐 🔍 Q             | Q. 🎹        |                     |                |            | reshark                 |  |  |  |
| ip.addr == 192.168.204.133 && tcp.port == 502 |                                      |                                            |                         |             |                     |                |            |                         |  |  |  |
| lo.                                           | Time                                 | Source                                     | Destination             | Protocol Le | ength Info          |                |            |                         |  |  |  |
|                                               | 115 26.419456                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 5; Unit:       | 1, Func:   | 1: Read Coils           |  |  |  |
|                                               | 116 26.419531                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 64 Response: Trans: | 5; Unit:       | 1, Func:   | 1: Read Coils           |  |  |  |
|                                               | 117 26.623272                        | 192.168.204.133                            | 192.168.204.136         | TCP         | 60 1073 → 502 [ACK] | Seq=73 Ack=61  | Win=65640  | Len=0                   |  |  |  |
|                                               | 119 26.653585                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 6; Unit:       | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 120 26.653747                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 66 Response: Trans: | 6; Unit:       | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 121 26.669713                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 7; Unit:       | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 122 26.669872                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 66 Response: Trans: | 7; Unit:       | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 123 26.873359                        | 192.168.204.133                            | 192.168.204.136         | TCP         | 60 1073 → 502 [ACK] | Seq=97 Ack=85  | Win=65616  | Len=0                   |  |  |  |
|                                               | 153 36.402963                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 8; Unit:       | 1, Func:   | 2: Read Discrete Inputs |  |  |  |
|                                               | 154 36.403094                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 64 Response: Trans: | 8; Unit:       | 1, Func:   | 2: Read Discrete Inputs |  |  |  |
|                                               | 155 36.420019                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 9; Unit:       | 1, Func:   | 1: Read Coils           |  |  |  |
| /                                             | 156 36.420095                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 64 Response: Trans: | 9; Unit:       | 1, Func:   | 1: Read Coils           |  |  |  |
|                                               | 157 36.516374                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 10; Unit:      | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 158 36.516531                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 66 Response: Trans: | 10; Unit:      | 1, Func:   | 5: Write Single Coil    |  |  |  |
|                                               | 159 36.712930                        | 192.168.204.133                            | 192.168.204.136         | TCP         | 60 1073 → 502 [ACK] | Seq=133 Ack=11 | 7 Win=6558 | 4 Len=0                 |  |  |  |
|                                               | 186 46.402446                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 11; Unit:      | 1, Func:   | 2: Read Discrete Inputs |  |  |  |
|                                               | 187 46.402540                        | 192.168.204.136                            | 192.168.204.133         | Modbus      | 64 Response: Trans: | 11; Unit:      | 1, Func:   | 2: Read Discrete Inputs |  |  |  |
|                                               | 188 46.420842                        | 192.168.204.133                            | 192.168.204.136         | Modbus      | 66 Query: Trans:    | 12; Unit:      | 1, Func:   | 1: Read Coils           |  |  |  |

## **Statistical Analysis of SCADA Physical-bound API Calls**

Formulation of Frequency and Timing Dependencies: Algorithm Development

**Control Command Dependency** 

$$P(V_k) := \{C_j, C_{j+1}, \dots, C_n\} \cup \{M_j, M_{j+1}, \dots, M_n\}$$
  
$$\forall M_i, C_j \in P(V_k) \land (ts(M_i) < ts(C_j)) : C_j \leftrightarrow C_i$$

#### **Control Time-Interval**

$$\forall C_i, C_j \in P(V_k) \ s.t. \ i \neq j: \ \Delta(i,j) := ABS(ts(C_i) - ts(C_j))$$
$$R_{D\Delta}(i-1,i) = \frac{Deviation(j) + \epsilon_{(i-1,i)}}{Mean(j)}$$

**Control Burst-Interval** 

$$(\forall B_{C_i}, B_{P_i} \in P(V_k): \quad \mu_j := |B_{C_i}| - |B_{P_i}|$$
$$R_{D\mu}(i) = \frac{Deviation(j) + \lambda_{(i)}}{Mean(j)}$$

**Control Frequency** 

$$\forall C_i \in P(V_k) \quad F(i) := |C_i|$$
$$R_{DF}(i) = \frac{|C_i \in P(V_k)|}{|P(V_k)|}$$



## **Inducing SCADA Events**

#### **Operational Events are configured in OPC Alarm&Event databases**

| SCADABR                                                                                                                                                   | 4 Urgent                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ◉ ````````````````````````````````````                                                                                                                    |                                                                                                      |
| Warning: use this facility at your own risk. Incorrect usage may result in corrupte                                                                       | d data and/or system failures.                                                                       |
| SQL ③ SELECT * FROM <u>eventHandlers</u>                                                                                                                  |                                                                                                      |
| Submit query Submit update                                                                                                                                |                                                                                                      |
| ID         XID         ALIAS         EVENTTYPEID         EVENTTYPER           3         activate_emergency         activate_emergency         1         1 | EVENTTYPEREF2         DATA           2         Serialized data(com.serotonin.mango.vo.event.EventHan |
|                                                                                                                                                           |                                                                                                      |

Extract all configured events and device parameters



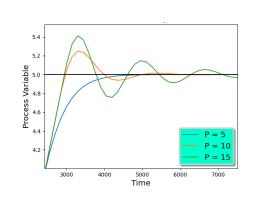
Statically parse the Function Block Diagram of the process to extract all dependent device states

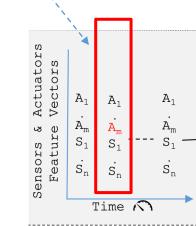
3

 $\forall k \in Events\_Set V; \ \forall D_i \in k_D; \ k_T := \bigcup_{i=0}^n \{D_i(S)\}$ 

Union all event states and inject into ScadaBR iteratively




## **Physics Analysis**


#### Learning normal sensor and actuator time series PLC s S Actuator Vectors Control Logic \_\_\_\_ LSTM Š $A_1$ $A_1$ $A_1$ VAE ΞΞ IONS A<sub>m</sub> S<sub>1</sub> SENSORS Am **QQ** لا |Feature Devices S Sensors Output ACTUAT Sn $S_n$ S. Physics Time 🔊

# Autoencoder Error Re-construction $MSE(x, \tilde{a}) = \frac{1}{m} \sum (x^i - \tilde{x}^i)^2$

Actuator and Sensor time slice may not be <u>causally related</u> Actuators are periodic in nature and not polled at same exact times,

e.g., rising edge or peak values





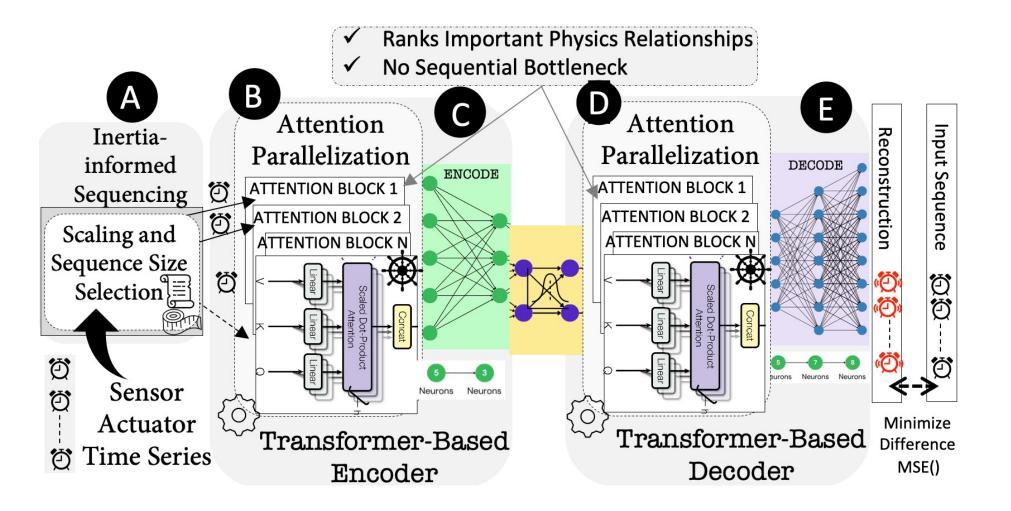
## **Physics Analysis (Cont'd)**

Learning normal sensor and actuator time series

#### Other challenges (for correlation with SCADA):

- 1. Physics have inertia (slow to respond to changes)
  - We use a data driven approach to infer inertia delays for each process
- 2. Neural networks have a bottle neck (more delays)
  - 1. We leverage Transformers

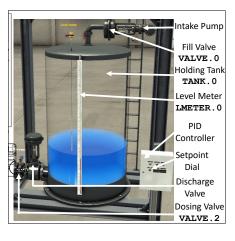
#### **Transformer-based Sequence Models**

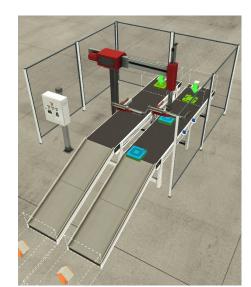

- 1. State-of-the-art sequence modelling technique
- 2. Uses Attention technique to rank causal relationships in time-series data
- 3. Can parallelize multiple Attention Blocks, eliminating the bottle neck in sequence models



Conveyor driven by a large spinning disc experiences inertia

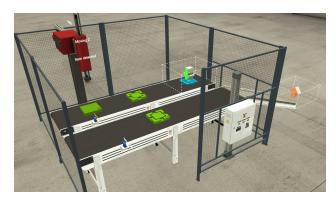



## **Transformer-Based Autoencoder**




Reference Paper: Attention is All you Need https://arxiv.org/abs/1706.03762




#### Physical Experiments Emulated in FactoryIO







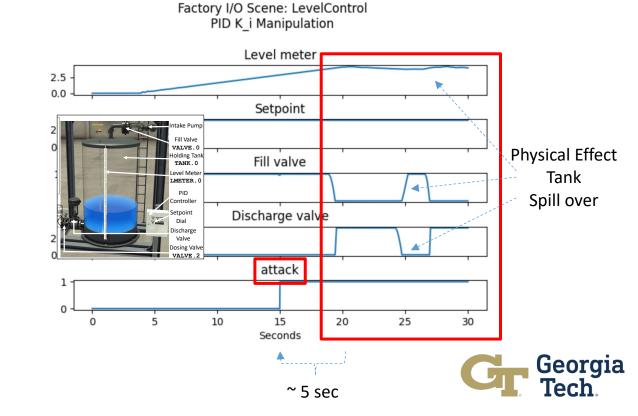




| ICS Processes   | Domain       | Events               | Per pro | ocess       | Event-Guided Dependency Analysis SOD Per Proc |         |                |      |       |       | $R_D$ Averages |            |          |                        |              | Physics Analysis |           |        |    |
|-----------------|--------------|----------------------|---------|-------------|-----------------------------------------------|---------|----------------|------|-------|-------|----------------|------------|----------|------------------------|--------------|------------------|-----------|--------|----|
|                 |              |                      |         |             |                                               | SOD P   |                |      |       | Proc  |                |            |          |                        |              | (Training)       |           |        |    |
|                 |              | Scenario<br>FileSize | States  | Verify (FN) | Task/Goal                                     | Task ID | Event Device   | CMDs | Nodes | Edges | $R_{D\Delta}$  | $R_{D\mu}$ | $R_{DF}$ | Analysis<br>Time (min) | Task Inertia | Seq Size         | Precision | Recall | F1 |
| HVAC            | A/C          | 6K                   | 18      | 0           | heat setpoint                                 | 6.1     | room temp      | 9    | 4     | 5     | 0.219          | 0.053      | 0.09     | 11.6                   | 11.8         | 13               | 79        | 92     | 85 |
| IIVAC           | AC           | 6K                   | 17      | 1           | heat flow                                     | 6.2     | vent           | 23   | 5     | 5     | 0.178          | 0.410      | 0.065    | 10.2                   | 11.8         | 13               | 88        | 83     | 85 |
| Chemical Dosing | Water Treatm | 11.5K                | 10      | 0           | level control                                 | 2.1     | holding tank   | 24   | 4     | 6     | 0.47           | 0.125      | 0.105    | 7.6                    | 4.5          | 5                | 85        | 70     | 77 |
| Chemical Doshig | water meanin | 11.5K                | 14      | 2           | dosing                                        | 2.2     | dose valve     | 22   | 5     | 9     | 0.419          | 0.111      | 0.344    | 7.5                    | 4.5          | 5                | 94        | 87     | 90 |
| Auto warehouse  | Manufacture  | 29K                  | 20      | 0           | pallet alignment                              | 3.2     | Axes X,Z       | 26   | 6     | 4     | 0.41           | 0.133      | 0.088    | 12.4                   | 5.1          | 5                | 95        | 93     | 94 |
| Auto watehouse  | wanutacture  | 29K                  | 36      | 1           | throughput                                    | 3.2     | entry conveyor | 32   | 7     | 5     | 0.42           | 0.167      | 0.034    | 12.9                   | 5.1          | 6                | 77        | 83     | 80 |

### SCADA Attack Injection STUXNET-type Infection of ScadaBR




Clone the ScadaBR repository. (<u>https://github.com/ScadaBR/ScadaBR</u>)

- Modify ModbusDataSource.java and recompile → ModbusDataSource.class. The attack source code can be found in Attack\_Scripts/ModbusDataSource.java.
- 3
- ModbusDataSource.class will read a Stuxnettype attack config file to perform attack in Files\ScadaBR\tomcat\conf\AttackConfig.txt
- 4

Replace the compiled ModbusDataSource.class with the current installed ScadaBR file C:\Program Files\ScadaBR\tomcat\webapps\ScadaBR\WEB-INF\classes\com\serotonin\mango\rt\dataSource\mo dbus\ModbusDataSource.class.

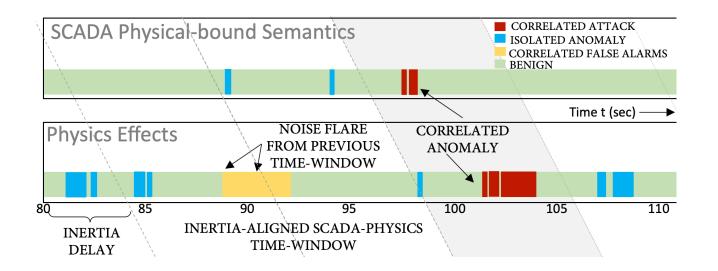
5

Restart ScadaBR. The attack will be activated when the right physical conditions exist. The attack log will be created in C:\Program Files\ScadaBR\tomcat\logs\AttackLog.txt.



## **Preliminary Results**

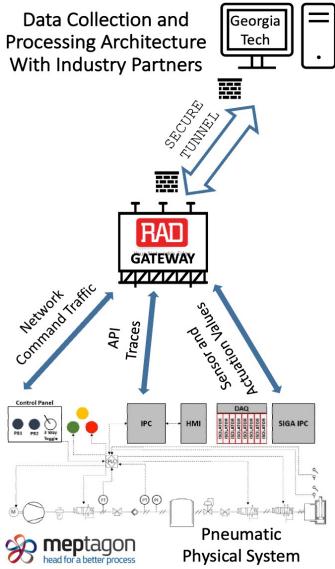
#### Inertia-Informed sequence sizes




S = Sequence Size, T = Threshold



## **Preliminary Results**


#### **Anomaly Correlation**



|                             |                  |        |                       |                     | SC                                                    | ADA.   | Ano     |        |                      |                     |    |    |                           |
|-----------------------------|------------------|--------|-----------------------|---------------------|-------------------------------------------------------|--------|---------|--------|----------------------|---------------------|----|----|---------------------------|
| Attack Category.            | Total<br>Attacks | TTP ID | Attack Description    | TTP Goal/Device     | Attacked Process (IDs in Table II)                    | C-TIME | C-BURST | C-FREQ | Physics<br>Anomalies | Correld.<br>ATTACKS | TP | FP | Avg. Detect<br>Time (sec) |
| I. Stuxnet-<br>Category     | 10               | T831   | Control Manipulation  | Impact Control      | 2.1, 2.2, 6.2, 9.1, 9.2<br>10.1, 10.2, 3.1, 3.2, 6.1  | 3      | 7       | 4      | 21                   | 12                  | 12 | 0  | 10.2                      |
| II. Industroyer<br>Category | 10               | T855   | Unauthorised Command  | Impair Process CTRL | 1.1, 1.2, 11.1, 7.1, 7.2<br>8.1, 8.2, 11.2, 9.2, 9.1  |        | 8       | 5      | 19                   | 10                  | 9  | 1  | 7.8                       |
| III. Oldsmar-<br>Category   | 10               | T836   | Modify Parameter      | Impact Control      | 4.1, 4.2, 8.1, 8.2, 11.2<br>7.2, 3.1, 3.2, 10.1, 10.2 | 17     | 11      |        | 35                   | 24                  | 24 | 0  | 5.4                       |
| IV. Triton-<br>Category     | 10               | T801   | Corrupt Process State | Inconsistent State  | 6.1, 6.2, 8.1, 5.1, 5.2<br>6.1, 6.2, 9.1, 9.2, 7.1    | 8      | 2       | 13     | 27                   | 22                  | 22 | 0  | 9.4                       |



#### Summary of our work (SCAWATCH)



- SCAWATCH is a passive alerting system to alert ICS operators of suspicious malware activities in SCADA host
- We are collaborating with industry partners, **Meptagon and RAD**, to integrate SCAWATCH to deploy in practical ICS/SCADA networks
- SCAWATCH detects attacks in SCADA via (1) statistical violations of processcontrol executions and (2) suspicious manipulation of SCADA physical-control resources (e.g., COM ports, PLC interfaces)
- SCAWATCH then correlates detected SCADA attacks with anomalies in running processes via a ML neural network framework.
- Tested on experimental data. Details and technical paper can be found in <u>https://github.com/lordmoses/SCAWATCH</u>.





• Thank You