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• Task 5: Generate event-mimicking attacks

• Task 8: Detect event-mimicking attacks

• Key focus on Commercialization
➢ Commercial-grade software development with Resource Innovations

➢ Load Prediction using Support Vector Regression

➢ Attack Detection and Mitigation using Support Vector Machines

Enhancing Cybersecurity of Grid Operations
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Commercialization: Motivation



False Data Injection Attacks and Countermeasures

Data

Control

Energy 
Management 
System (EMS)Attack

➢Knowing network configuration, attackers can maliciously change a subset of 
measurements with counterfeits before they reach the EMS

➢Requires attacker to have access to measurement devices or data concentrators

➢Can be unobservable and result in physical [2] / economic [3] consequences

[1] Zhang, J., Sankar, L.: ‘Physical system consequences of unobservable state-and-topology cyber-physical attacks’, IEEE Transactions on Smart Grid, 2016, 7, (4), pp. 2016–2025

[2] Moslemi, R., Mesbahi, A., Velni, J.M.: ‘Design of robust profitable false data injection attacks in multi-settlement electricity markets’, IET Generation, Transmission Distribution, 2018, 

12, (6), pp. 1263–1270

[3] Liang, J., Sankar, L., Kosut O.: ‘Vulnerability analysis and consequences of false data injection attack on power system state estimation’, IEEE Transactions on Power Systems, 

2015, 31, (5), pp. 3864-72
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Detecting Load Redistribution Attacks via Support 
Vector Models

➢Load Redistribution (LR) attacks: redistribute loads across 

buses without any change in net load

➢Current net load prediction approaches can miss this entire 

class of false data injection attacks (FDIA)

➢Our detection methodology: 

➢Grid telemetry including loads follow diurnal and seasonal 

patterns

➢Historical data can be used to predict such patterns 

➢ML algorithms trained on such temporally correlated data can 

be used to predict loads at the bus-level

➢Use multi-output support vector regression (SVR) load 

predictor 

➢ predicts loads by exploiting both spatial and temporal 

correlations 

➢Combine with a support vector machine (SVM) classifier to 

classify incoming load estimate as either normative or 

attacked

Data

Control

Energy 
Management 
System (EMS)Attack
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Commercialization: Load Prediction using SVR



Load Prediction using Support Vector Regression

➢Learn a support vector regression model for each load bus
➢Feature set can include temporal and spatial/network correlations

➢Feature selection to predict load at hour ℎ + 1
➢Time information 

➢Historical load values at past s hours, as well as at hour HR and HR+1 at past d 
days

➢Combine these values for multiple loads to capture spatial correlations

➢Can be applied to predict bus level loads

MO WD/WE HR 𝑷𝑫𝒊

𝒉 𝑷𝑫𝒊

𝒉−𝟏 ⋅⋅⋅ 𝑷𝑫𝒊

𝒉−𝒔 𝑷𝑫𝒊

𝒉−𝟐𝟒𝒅 𝑷𝑫𝒊

𝒉−𝟐𝟒𝒅+𝟏 ⋅⋅⋅ 𝑷𝑫𝒊

𝒉−𝟐𝟒 𝑷𝑫𝒊

𝒉−𝟐𝟑

𝑃𝐷1

ℎ+1 𝑃𝐷2

ℎ+1 𝑃𝐷𝑁

ℎ+1⋯
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Support Vector Regression (SVR)

➢Find a map between the input variables 

and a continuous target variable which 

minimizes the prediction error.

➢ Involves finding a hyperplane in the higher 

dimension space that fits the data points in 

the regression task.

➢ “Kernel trick” allows for non-linear 

relationships: maps inputs to a high-

dimensional.
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Support Vector Regression (SVR)

Finding       and     that satisfies

Primal

Dual

RBF Kernel 
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Support Vector Regression Hyperparameters

➢Kernel: Radial Basis Function (RBF)

➢C or M (Regularization parameter): 
Trade-off between training error and 
model complexity

➢Epsilon (𝜖) : Tolerance for error; higher 
values allow for more errors, reducing 
overfitting

➢Gamma (𝛾) : Controls standard 
deviation of the RBF kernel; higher 
values for more noisy data
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Code Workflow

Data Source

Data 

Ingestion

Data 

Transformation

Model 

Training

Model 

Evaluation

Development

Docker AWS

Deployment
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Code Workflow: Development phase

Data Ingestion
Fetch data from GitHub

Data Transformation
Generate features and standardize the data

Model Training
80-20 train test split

Gridsearch CV using Time series split

Model Evaluation

MO WD/WE HR

𝑷𝑫𝒊

𝒉 𝑷𝑫𝒊

𝒉−𝟏 ⋅⋅⋅ 𝑷𝑫𝒊

𝒉−𝒔 𝑷𝑫𝒊

𝒉−𝟐𝟒𝒅𝑷𝑫𝒊

𝒉−𝟐𝟒𝒅+𝟏 ⋅⋅⋅ 𝑷𝑫𝒊

𝒉−𝟐𝟒 𝑷𝑫𝒊

𝒉−𝟐𝟑

𝑀𝐴𝑃𝐸 =
1

𝑛


𝑖=1

𝑛
ෝ𝑦𝑖 − 𝑦𝑖

𝑦𝑖

𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 −
σ𝑖=1

𝑛 ( ෝ𝑦𝑖 − 𝑦𝑖)2

σ𝑖=1
𝑛 ( ഥ𝑦𝑖 − 𝑦𝑖)2
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Code Workflow: Deployment

Docker

Github CI-CD pipeline

➢ Continuous Delivery – Create a docker image and push it 

to AWS ECR (docker container registry service)

➢ Docker allows you to package applications and their 

dependencies into portable containers.

➢ It ensures consistent and efficient deployment 

across different environments.

➢ Continuous Deployment – Pull the latest docker image 

and run it on docker container using AWS EC2 (virtual 

server in cloud).

AWS

Deployed the Flask web application on AWS
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Datasets for Performance Evaluation

PJM

● 19 Load Buses

● Dataset – 2015 to 2018

● Sample frequency – 1hr

Texas Bus System

● 1347 Load Buses

● Dataset – 2016

● Sample frequency – 1hr

CAISO

● 30 Load Buses

● Dataset – 2021 to 2023

● Sample frequency - 1hr
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Results (PJM)

➢ .                                        

➢ Ideal 𝑅2 Score is 1.

➢ 𝑅2 Score for the load buses is above 0.95

➢ 𝑀𝐴𝑃𝐸 for the load buses is concentrated 

around 1%

➢ 𝑀𝐴𝑃𝐸 =
1

𝑛
σ𝑖=1

𝑛 ෞ𝑦𝑖−𝑦𝑖

𝑦𝑖

𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 −
σ𝑖=1

𝑛 ( ෝ𝑦𝑖 − 𝑦𝑖)2

σ𝑖=1
𝑛 ( ഥ𝑦𝑖 − 𝑦𝑖)2

 

PJM

● 19 Load Buses
● Dataset – 2015 to 2018
● Sample frequency – 1hr
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Results (Texas)

➢ 𝑅2 Score for majority of load buses is above 

0.95

➢ 𝑀𝐴𝑃𝐸 for the load buses is concentrated 

around 3%

➢ Reason for  higher MAPE: Lower number of 

training samples, relative to the number of load 

buses

Texas Bus System

● 1347 Load Buses
● Dataset – 2016
● Sample frequency – 1hr

➢ 𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 −
σ𝑖=1

𝑛 (ෞ𝑦𝑖−𝑦𝑖)2

σ𝑖=1
𝑛 (𝑦𝑖−𝑦𝑖)2

➢ 𝑀𝐴𝑃𝐸 =
1

𝑛
σ𝑖=1

𝑛 ෞ𝑦𝑖−𝑦𝑖

𝑦𝑖
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Results (CAISO)

➢ 𝑅2 Score for majority of load buses is above 

0.95

➢ 𝑀𝐴𝑃𝐸 for majority of the buses is concentrated 

around 1%

CAISO

● 30 Load Buses
● Dataset – 2021 to 2023
● Sample frequency - 1hr

➢ 𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 −
σ𝑖=1

𝑛 (ෞ𝑦𝑖−𝑦𝑖)2

σ𝑖=1
𝑛 (𝑦𝑖−𝑦𝑖)2

➢ 𝑀𝐴𝑃𝐸 =
1

𝑛
σ𝑖=1

𝑛 ෞ𝑦𝑖−𝑦𝑖

𝑦𝑖
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Commercialization: Development with Resource Innovations, Inc.

➢Modularized and documented python code 
handed-off to RI

➢Version control using GitHub throughout 
the project, enabling efficient tracking and 
management of code changes

➢Continuous development methodology for 
the load prediction and attack detection: bi-
weekly progress tracking 

➢RI has performed extensive testing on 
different datasets, including PJM, CAISO, 
and TX-2000 bus system with highly 
promising results

➢RI has contacted industry partners and 
EMS vendors
➢ Bus-level load prediction is crucial with 

fast-increasing distributed energy 
resources



Commercialization: Attack Detection using SVM 
(Ongoing Development)



Attack Detection Framework

Load Data

SVR Load 

Predictor

SVM Attack 

Detector

Selected 

Features

Observed 

Loads

Predicted 

Loads

Attack 

Label

The predicted loads can be directly used 

for attack mitigation
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Support Vector Machine

Find the separating hyperplane with largest margin that separates the two classes 

Primal

Dual

22



SVM Attack Detector

➢ Feature selection 

➢ Train the detector using normal data and random LR attacks to maximally explore the attack 

space

➢ Test the performance with random attack and intelligently designed attacks

➢ Line overflow (LO) and cost maximization (CM) attacks

➢ Map the 20 PJM zones into the 20 loads in the IEEE 30-bus system

MO WD/WE HR𝑷𝑫𝟏
𝑷𝑫𝟐

⋅⋅⋅ 𝑷𝑫𝑵

Time information Predicted loads

𝑷𝑫𝟏
𝑷𝑫𝟐

⋅⋅⋅ 𝑷𝑫𝑵

Observed loads
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Random Attack Generation

LR attacks : 𝑃𝐷,𝐴𝑡𝑘 = 𝑃𝐷 + Δ𝑃𝐷,  

𝑖

Δ𝑃𝐷𝑖
= 0

𝑷𝑫

𝑃𝐷1

𝑃𝐷2

⋯

𝑃𝐷𝑁

𝑃𝐷2

𝑃𝐷4

𝑃𝐷7

Select 𝑘 loads 

at random 𝛾1

𝛾2

𝛾3

𝜏𝑃𝐷2
-𝜏𝑃𝐷2 0

𝛾 ∼ 𝑁(0, Γ)

Γ𝑘𝑘 =
1

2
𝜏𝑃𝐷Κ 𝑘

2

𝟏𝑇𝛾 = 0

𝐸 𝟏𝑇𝛾  2 = 𝐸[𝟏𝑇𝛾𝛾𝑇𝟏] = 𝟏TΓ𝟏 = 0

𝟏TΓ𝟏 = 0

Γ ≽ 0
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Intelligent LR attacks: Line Overflow (Case 1)

➢ Line overflow (LO) attacks

➢ Bi-level optimization

➢ Upper-level: manipulate measurements to 

generate a malicious load pattern

➢ Lower level: solve DC-OPF using the 

manipulated data

➢ This dispatch in turn causes a line 

overflow 

[3] J. Liang, L. Sankar and O. Kosut, "Vulnerability Analysis and Consequences of False Data Injection Attack on Power System State Estimation," 

in IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3864-3872, Sept. 2016.
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[4] Z. Chu, L. Sankar and O. Kosut, “Detecting Load Redistribution Attacks via Support Vector Models," in IET Smart Grid, vol. 3, no. 5, pp. 551-

560, Oct 2020.

Intelligent LR attacks: Cost Maximization (Case 2)

➢ Cost Maximization (CM) attacks

➢ Goal is to find the malicious load 

pattern that maximizes the cost of 

generation

➢ Change measurements to cause such 

a malicious load pattern via solution to 

an optimization problem

Optimization Problem –

Attack vector c is obtained by solving
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LR Attack Detection: Evaluation (On-going Efforts)

➢ Evaluation on PJM dataset: illustrations for 𝜏𝑚𝑖𝑛 = 3% and C = 2000  (𝜏𝑚𝑖𝑛 is the smallest load shift used in training)

➢ CM attacks with consequences are those that increase the operating cost by more than 1%

➢ LO attacks with consequences are those that result in physical overflows

➢ Next Step: Evaluation required on different datasets: e.g., CAISO, TX-2000 bus system

All Attacks Attacks with consequences 27



Event-Mimicking Attacks on PMU Data: 
Design and Mitigation



• Modern grid with renewables is more stochastic in operations and requires real-
time monitoring to detect/identify real events (oscillations/outages) and attacks. 

• ML-based detectors can be easily evaded by attacks that mimic events, ultimately, 
causing significant damage on grid operations. 

Source: https://towardsdatascience.com/evasion-attacks-on-machine-learning-or-adversarial-examples-12f2283e06a1

mimicry attack: a careful cyberattack on data that throws off ML detector

hard to launch

Event-mimicking Attacks and Countermeasures 
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Source: https://towardsdatascience.com/will-my-machine-learning-be-attacked-6295707625d8

Data ML algorithm

White box attacks: 
Feature/Model information 

Falsification

PMU data can be falsified but for mimicking event attacks  

    - how to tamper data? 

    - how many PMUs to tamper? 

    - how long to tamper?

Where Can Attackers Target OT Systems?

extract and exploit 

signal physics (modes)

30



Event ID: Learn Event Signatures from Measurements

✓ Characterizing events based on a set of physically interpretable features 

✓ Finding the most informative sparse set of features

✓ Learning a set of robust classification models to identify the events

[5] N. Taghipourbazargani, G. Dasarathy, L. Sankar and O. Kosut, "A Machine Learning Framework for Event Identification via Modal Analysis of PMU Data," in IEEE Transactions on Power Systems, 2022.

Features ∈ ℝ𝑑
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Attack Design: Threat Model

➢ Start with White Box Attack Model: Attacker 
has full information of the event classifier 
(LR)

➢ Untampered Features:
➢ Angular Frequency

➢ Damping

➢ Residual Amplitude

➢ Residual Angle

➢ Channels: Voltage magnitude, voltage angle, 
frequency

➢ Tamper features just enough for the event to 
be misclassified
➢ Move feature sample across decision boundary

Features ∈ ℝ𝑑
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Event Mimicking Attack Algorithm

Inputs: LR classifier, attack parameters, 
PMU data

1. Tamper features until the event is 
misclassified by employing the 
knowledge of LR parameters 

2. Reconstruct time signals of the tampered 
data

3. Replace the time domain signals for only 
the PMUs under the attacker’s control

4. Extract features of the new signals set

5. Classify using LR model

6. Repeat 1 through 5 until misclassification

Output: tampered PMU measurements

Features ∈ ℝ𝑑
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Setup and Assumptions for Illustrations

➢ Network and data: synthetic PMU data generated using PSS\E for South Carolina 
500-bus system
➢ 750 generation loss and 750 load trip events

➢ Voltage magnitude, voltage angle, and frequency measurements are collected from 95 PMUs 
across the system

➢ Classifiers: Logistic regression (LR) and gradient boosting (GB) algorithms
➢ Training data: 591 generation loss and 609 load trip events

➢ Test data: 159 generation loss and 141 load trip events

➢ Modal analysis is used for feature extraction
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Classification of Untampered Events

➢ Event classifier is applied to 300 test data (159 generation loss and 141 load trip events)

➢ LR and GB classifiers are used to classify untampered test data to establish a base case

➢ Both models are trained on the same dataset

➢ Both models classify the events with very high accuracy
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Attack Illustration

➢ Attack Assumptions: 

➢ Attacker has full knowledge of LR classifier model

➢ Attacker has access to a subset of system PMUs (no more than 20)

➢ Tampers 1200 events (training set) comprised of 591 generation loss and 609 load loss events

➢ Efficacy of tampered data also evaluated on GB classifier (trained on clean data) 

➢ Results: overall successful attack with LR having a higher success rate as expected

➢ Generation loss detection using GB has higher robustness against the attack

➢ Load loss attack has a 100% success rate against LR and GB classifiers
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Mitigation: Adversarial Approach

➢ Attack algorithm generates adversarial examples that are likely to be misclassified

➢ The generated adversarial examples are used in combination with clean data to train new 
classifier

➢ Robust classifier should be able to identify tampered and untampered data with their true 
label with high accuracy

➢ How do we know the attack can’t be applied again with this classifier?!
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Robust Classifier Training Algorithm

Inputs: LR classifier, attack parameters, PMU data

1. Apply the attack employing the knowledge of LR classifier 

2. Train new LR classifier using combined adversarial examples and clean 
data

3. Update the LR classifier

4. Validate the attack by applying it on unseen clean data using the updated 
classifier

5. Repeat 1 through 4 until the success rate of the attack on the unseen 
data diminishes

Output: Robust Classifier

➢ Performance evaluation in progress: preliminary results are encouraging
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Broader Utility: API for generation of eventful 
PMU data



Generation of Synthetic Eventful PMU data

PSSE 

Python API

Input:

   .raw file

   .dyr file

Initialization: Get the list of loads, generators, lines, and buses

For different loading conditions:

        For any component:

1. Apply the new loading condition 

2. Run the power flow 

3. Initialize dynamic simulation

4. Flat run for 1 second

5. Apply disturbance on the component at t=1 second 

6. If the component is a bus:

 clear the disturbance after 5 cycles

7. Run the dynamic simulation for additional 10 second

8. Record the Vm, Va, F measurements 

Output

Vm, Va, F channels  .out, .xlsx., and .mat files

and

𝐃 = {𝑿𝐷 , 𝒀𝐷}

Network: 

South-Carolina 500 bus system

No. of Generated events: 

Load loss: 500

Generation Loss: 500

Line Trip: 500

Bus Fault: 327
Line Trip Gen Loss
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Summary 

➢ Commercial-grade software for bus-level load prediction

➢ Evaluated extensively on PJM, CAISO, and TX-2000 network data

➢ Remarkable prediction accuracy

➢ CI-CD pipeline demonstrated on AWS

➢ Code hand-off to Resource Innovations, Inc.

➢ Commercial-grade software for generation of intelligent attacks

➢ On-going development for line overflow and cost maximization attacks

➢ Attack detection using support vector machines

➢ Evaluated on PJM dataset: needs evaluation on additional datasets

➢ Event-mimicking attack generation via physics-informed ML

➢ Robust classifiers designed via adversarial ML (on-going)

➢ Promising initial results for logistic regression and gradient boosting

➢ Extensions to different classifiers including GANs.

➢ Python API for creation of synthetic eventful PMU data
41
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