Task 2: Digital representation of physical processes and operational process modelling

Michael Faifer, Prof. Rami Puzis, Prof. Robert Moskovitch, Prof. Asaf Shabtai Ben Gurion University of the Negev

Asaf Shabtai, PhD, CISSP

Dept. of Software and Information Systems Engineering @ BGU

- Head of research Cyber@BGU
- Head of M.Sc. track in cyber security
- International summer camp focusing on data science and cyber security (ICSML)

Research areas

Big data security

analytics

Security of

medical devices

detection in OT/CPS

systems (SCADA)

Additive manufacturing

Security of replacement units

IoT security (device identification, anomaly detection)

Biometric security control

Cloud security

Malware detection

using static / dynamic analysis

Using Blockchain

for cyber security

(IoT firmware

Measuring the security awareness

Mobile device security

Innovative cyber-

attacks

Avionic systems security (ARINC-664, 1553, ADS-B, Drones)

Deep learning and Adversarial Learning

(detecting cyber attacks, fake news, fake profiles)

Social networks security

of users

Data leakage and misuse detection: sensitive data representation, update framework) honeytokens, M-Score, user profiling...

Machine learning,

- Monitoring, detecting, and handling cybersecurity incidents in ICS
 - is based on data collected from the operational network and IT network
 - ignores (in most of the cases) the operational state or the ICS system
 - Cannot know which control flow was impacted by the attack
- Security personnel is not involved in the definition of the operational processes of the ICS; on the other hand, when designing operational processes, the focus is on safety; engineers are not taking part in attack detection
- Lack of common language for sharing OT processes

For example:

- creating various fuels in an oil refinery
 - a sequence of events used to burn off excess gases:

"turn on flame" \rightarrow "release gas" \rightarrow "turn off flame"

• changing the order of events to

"turn on flame" \rightarrow "turn off flame" \rightarrow "release gas"

could result in the gas being continually released, potentially damaging equipment

- As a result...
 - potential false alarms
 - wasted time (Investigations of incidents)
 - applying wrong countermeasures
 - miscommunications (between engineers, cyber security personal, and operators)

- Creating a relevant context for decision making (e.g., attack detection)
- Establish sharable modeling language for ICS system's operational states
- Develop a method for **modeling and defining** the states of the system
- Translating low level sensor/network data into higher level temporal patterns -- continuously
- Develop a method for real-time, sensor-based operational state identification using temporal patterns and temporal pattern mining
- Apply and test within ICS environments

- Approach for ICS operations situational awareness
- Formulation of common operational process enumeration (COPE) for Industrial Control Systems (like CAPEC used for enumerating attack patterns)
 - CAPEC
- COPE will be used to represent the operational processes in an ICS
 - in a structured human readable manner
 - while specifying the data sources appropriate for monitoring and identifying the process
- COPE defines shareable information at multiple levels of abstraction
 - acceptable tradeoff between transparency and obscurity
 - similar processes in different ICSs share the same information

- Using COPE, stakeholders can understand at any point in time the state of the ISC system
 - provide context to alerts for better understanding the risks and prioritization
 - define a process signature and detect anomalies
 - justify system behaviors and avoid false positives
 - provide COPE info when sharing threat intelligence

- [1] Process Discovery for ICS Cyber Attack Detection (2017)
 - Use process mining to detect ICS control flow (sequence of events, conducted by an ICS devices) anomalies
 - Based on logs from PLCs
 - Evaluated widely used process discovery algorithms: α-algorithm, the Fuzzy Miner, the ILP Miner, the Flexible Heuristics Miner (FHM), Inductive Miner; using an example setup
 - Process mining-based methods operate in a form of offline analysis
 - Some attacks may not be detected due to insufficient logging correlate device log data and **low-level sensor data** for use in process mining based intrusion detection

[2] Anomaly detection for ICSs using process mining (2018)

• Extending the method presented in 2017, for detecting anomalies

[3] Detection of Integrity Attacks to Smart Grids using Process Mining and Time-evolving Graphs (2018)

- Measurements of smart meters in smart grids
- Discover graphs from smart meter readings that represent the customer's behaviour
- The graphs are then compared in order to detect anomalous behavior of a customer
- [4] Detecting Anomalous PLC Events Using Process Mining (2022)
 - Using a simulated traffic light system
 - Process mining is used to create a Petri net model from the activity log
 - Invalid state transition detector is created to identify anomalous

[5] Cybersecurity Analysis via Process Mining: A Systematic Literature Review (2022)

- Mentioned the **importance** of using process mining for cybersecurity
- Reviewed the usage of process mining in various domains (ICS, mobile, fraud...)

[6] 3-layer modelling method to improve the cyber resilience in ICSs (2023)

- Propose the 3-layer modelling method that reproduces ICS by the actor, asset, and process models
- Quantify the availability of ICS influenced by cyberattacks, considering the behavior of personnel involving both cybersecurity and industrial operations

• Top-Down (knowledge-based):

- Using system description, piping and instrumentation diagram, and domain expert
- Domain expert/process engineer defines the COPEs
- Cannot cover all COPEs; difficult to define data-driven patterns
- Bottom-Up (data-driven):
 - Use sensory/network data of normal operation and system architecture diagrams
 - Use temporal data mining approach for finding patterns within the raw data
 - Match them meaningful identified patterns with COPEs
 - Domain expert assists in confirmation or correction

Common Attack Pattern Enumeration and Classification (CAPEC) vs Common Operational Process Enumeration (COPE)

- Attack Patterns (CAPEC)
 - Name, ID
 - Description
 - Likelihood of Attack
 - Typical Severity
 - Related Attack Patterns
 - Execution Flow
 - Prerequisites

- Skills/Resources Required
- Indicators
- Consequences
- Mitigations
- Example Instances
- Related Weaknesses

- Operational Processes (COPE)
- Name, ID
- Description
- Cope level (Tactic\Process\Low Level Process)
- Common Automation Level (Automatic\Manual\Both)
- Triggers
- Includes
- Extends
- Process prevalence
- Impact modifiers (severity)
- Related Processes
- Execution Flow

- Prerequisites
- Skills/Resources Required
- Required sensors/telemetry
- Optional Sensors
- Related past incidents
- Example Instances
- Related Weaknesses

- Defining COPEs
- Defining (temporal) patterns that can be used for identifying the COPEs within the raw data (sensor data, network data...)
- Looking for COPEs within raw data provided
- Identify COPEs' instances within the data in cybersecurity tasks

• Using KarmaLego – temporal pattern mining algorithm

KarmaLego - illustration

• First step – defining temporal abstractions

22/06/2020 09:**24/D6**/2020 09:**21/D6**/2020 09:**28/06**/2020 09:**38/D5**/2020 09:**33/D5**/2020 09:**30/D6**/2020 09:57:36

Pattern mapping to COPEs

Visualization of Frequent Patterns – Tabular View

Visualization of Frequent Patterns – Graphical View

Selected TIRP info									
Metric	Value								
Total Levels	2								
V.S	92.22								
M.H.S	3.20								
M.M.D	12.46								
EXPLORE TIRP									

Pattern's metrics

X Axis		Y Axis		Bubble Color		Bubble Size	
Vertical Support - Cohort	•	Mean Horizontal - Cohort	~	Mean Mean Duration - Cohort	~	Query Rating	~

Properties Distribution												
GENDER	MARITAL STATUS	AGE_GROUP	AREA_NAME	MARKET	SUB_MARKET							
	SOCIAL_TYPE		SOCIOE	CONOMIC_TY	PE							
	Cohort 49.5%	50.5%	● Femal ● Male	le								

Glucose.Descreasing	Glucose.	Descreasing	j - 12															
Glucose.Increasing														Glucose.Incr	easing - 4			
0:	:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	8:00	9:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00

Mean Presentation

Properties distribution

Visualization of Explored Pattern

• Defining COPEs

- Defining (temporal) patterns that can be used for identifying the COPEs within the raw data (sensor data, network data...)
 - define temporal abstractions on raw data
 - apply Karmalego algorithm on the temporal abstractions and identifying temporal patterns at different levels of abstractions
- Looking for COPEs within raw data provided
 - Using an existing advanced visualization tool for investigating the patterns: (1) link between an identified pattern and predefined COPE; (2) identify interesting pattern and define it as a COPE
- Utilizing COPEs and identified instances within the data in cybersecurity tasks
 - Anomaly/attack detection

Proposed framework

Dataset \rightarrow SWaT (2015-2021)

- SWaT \rightarrow Secure Water Treatment Testbed
- 6 Stages (Intake, Filtering, UV, Reverse Osmosis, Backwash)
- 49 Sensors
- 11 Days of continuous operation
- Access to Raw Data

Fig. 1: Actual Photograph of SWaT testbed

Dataset \rightarrow SWaT (2015-2021)

30

- 61 COPEs were defined by the expert (i.e., the expert-based phase)
 - Coverage of 26 sensors/actuators (Out of 49)
- KarmaLego detected ~20K patterns; only 162 of them were relevant (involving the relevant sensors)
 - Requires Pre-Processing (data abstraction) using EWD, EFD, SAX, Gradient, etc.
- Following the investigation of the generated patterns, additional 24 new COPEs were identified

• 85 COPEs in total

- During the manual investigation we were able to match 74 temporal patterns and COPEs
- 87% success rate; 54% false patterns

Results: examples

ID	Name	Is Abstract	Based On	Description	Origin	Symbols	Image
62	Tank is draining and not refilled after being filled to max.	×	с	Tank was filled to Max, stopped to refill and started to drain only	DD	LIT101.HIGH, MV101.CLOSED, FIT101.NOFLOW, P101.ON, LIT101.MEDIUM	LITTIDLIEGH LITTIDLIEGH KITTIDU NV1511 CLO
63	Tank is draining and not refilled after being filled to max.	×	с	Tank was filled to Max, stopped to refill and started to drain only	DD	LIT101.HIGH, MV101.CLOSED, FIT101.NOFLOW, LIT101_GRAD.DECREASING, LIT101.MEDIUM	LITTOS HICH UNKON 04.403
64	Tank is draining and not refilled after being filled to max.	×	с	Tank was filled to Max, stopped to refill and started to drain only	DD	LIT101.HIGH, MV101.CLOSED, FIT101.NOFLOW, MV201.OPEN, LIT101.MEDIUM	LITIOLEUCH
65	Maxed Tank is draining to medium and not re- filled.	×	с	Tank was filled to Max, stopped to refill and started to drain only	DD	LIT101.HIGH, P101.ON, MV201.OPEN, LIT101_GRAD.DECREASING, AIT202ABS.LOW, LIT101.MEDIUM	L/T101.H90H SUfficience.electronic P191.ON PR0.Onelectronic MV201.OPEN Model offers.rem L/T101.H90A Protocol.secol L/T101.GRA Protocol.secol L/T101.H90A Protocol.secol L/T101.H90A Protocol.secol L/T101.H90A Protocol.secol L/T101.H90A Protocol.secol D/T101.H90A Protocol.secol 0:8500 E0000 E246480
66	Emptied Tank is re- filled to medium without draining	×	С	Emptied Tank started to fill rapidly with- out being sucked out.	DD	LIT101.LOW, P101.OFF, LIT101_GRAD.RAPID_INCREASING, LIT101.MEDIUM	UT101L00/ UT101L00/ HU P101.0FF P00.0FE HU UT101_GRA. UT10_GRAUT10_GRAD_255CRAPD_MOREHAR-5% UT101.MEDIT01962088-488 0-88.06 0:000 1926636 193028 0:86:06 0:000 1926836

Example – water intake

- COPEs good foundation for representing ICS processes
- A COPE may have several possibilities for defining patterns
 - Usage of different set of sensors
 - Different state of said cope (draining hot water vs draining cold water)
- Needs to improve coverage
- Next steps
 - Implement on additional cases/ICSs
 - Integrate within an anomaly/attack detection task

Thank you!