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The problem: missing the operational state situational awareness '« =" =

* Monitoring, detecting, and handling cybersecurity incidents in ICS
* is based on data collected from the operational network and IT network
* ignores (in most of the cases) the operational state or the ICS system
* Cannot know which control flow was impacted by the attack

 Security personnel is not involved in the definition of the operational
processes of the ICS; on the other hand, when designing operational

processes, the focus is on safety; engineers are not taking part in attack
detection

* Lack of common language for sharing OT processes
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For example:
 creating various fuels in an oil refinery

* a sequence of events used to burn off excess gases:
“turn on flame” - “release gas” - “turn off flame”
e changing the order of events to
“turn on flame” = “turn off flame” - “release gas”
could result in the gas being continually released, potentially damaging equipment
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The problem: missing the operational state situational awareness Iz "" ﬁ

 As a result...

potential false alarms
* wasted time (Investigations of incidents)
* applying wrong countermeasures

* miscommunications (between engineers, cyber security personal, and operators)



Research goals: providing real-time operational state situational & iﬂ"
awareness he

Creating a relevant context for decision making (e.g., attack detection)

Establish sharable modeling language for ICS system’s operational states

Develop a method for modeling and defining the states of the system

Translating low level sensor/network data into higher level temporal patterns -- continuously

Develop a method for real-time, sensor-based operational state identification using temporal
patterns and temporal pattern mining

Apply and test within ICS environments
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Approach for ICS operations situational awareness - N S

* Formulation of common operational process enumeration (COPE)
for Industrial Control Systems (like CAPEC used for enumerating
attack patterns)
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. - . ' (pglsmiarroosalon  Required
* COPE will be used to represent the operational processesinanICS | e e
* in a structured human readable manner o o
 while specifying the data sources appropriate for monitoring and oo+ ol o
identifying the process e A

* COPE defines shareable information at multiple levels of
abstraction
* acceptable tradeoff between transparency and obscurity
e similar processes in different ICSs share the same information
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Approach for ICS operations situational awareness T~T LS 2

* Using COPE, stakeholders can understand at any point in time the state of
the ISC system

* provide context to alerts for better understanding the risks and prioritization
* define a process signature and detect anomalies
* justify system behaviors and avoid false positives

* provide COPE info when sharing threat intelligence
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[1] Process Discovery for ICS Cyber Attack Detection (2017)

* Use process mining to detect ICS control flow (sequence of events, conducted by an
ICS devices) anomalies

e Based on logs from PLCs

* Evaluated widely used process discovery algorithms: a-algorithm, the Fuzzy Miner,
the ILP Miner, the Flexible Heuristics Miner (FHM), Inductive Miner; using an
example setup

* Process mining-based methods operate in a form of offline analysis

* Some attacks may not be detected due to insufficient logging - correlate device log
data and low-level sensor data for use in process mining based intrusion detection
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[2] Anomaly detection for ICSs using process mining (2018)
* Extending the method presented in 2017, for detecting anomalies

[3] Detection of Integrity Attacks to Smart Grids using Process Mining and
Time-evolving Graphs (2018)
* Measurements of smart meters in smart grids
* Discover graphs from smart meter readings that represent the customer’s behaviour
* The graphs are then compared in order to detect anomalous behavior of a customer

[4] Detecting Anomalous PLC Events Using Process Mining (2022)
* Using a simulated traffic light system
* Process mining is used to create a Petri net model from the activity log
* |Invalid state transition detector is created to identify anomalous
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[5] Cybersecurity Analysis via Process Mining: A Systematic Literature Review
(2022)

* Mentioned the importance of using process mining for cybersecurity

* Reviewed the usage of process mining in various domains (ICS, mobile, fraud...)

[6] 3-layer modelling method to improve the cyber resilience in ICSs (2023)

* Propose the 3-layer modelling method that reproduces ICS by the actor, asset, and
process models

e Quantify the availability of ICS influenced by cyberattacks, considering the behavior
of personnel involving both cybersecurity and industrial operations



Proposed method: expert & data driven approach TT S S

* Top-Down (knowledge-based):
* Using system description, piping and instrumentation diagram, and domain expert
* Domain expert/process engineer defines the COPEs
* Cannot cover all COPEs; difficult to define data-driven patterns

* Bottom-Up (data-driven):
* Use sensory/network data of normal operation and system architecture diagrams
* Use temporal data mining approach for finding patterns within the raw data
* Match them meaningful identified patterns with COPEs
* Domain expert assists in confirmation or correction



Common Attack Pattern Enumeration and Classification (CAPEC) vs T i cn BE
Common Operational Process Enumeration (COPE) L e =

e Attack Patterns (CAPEC) e Operational Processes (COPE)
* Name, ID « Skills/Resources ) Name.' "? * Prerequisites
. Descripti Required * Description « Skills/Resources
escription . * Cope level (Tactic\Process\Low R ired
* Indicators Level Process) SRl
* Likelihood of Attack c Automation Level - Required
. ® ommon Automation Leve
* Typical Severity e e (Automatic\Manual\Both) sensors/telemetry

* Mitigations * Triggers

* Related Attack Patterns * Optional Sensors

* Example Instances * Includes
* Execution Flow * Extends * Related past
+ Prerequisites * Related Weaknesses « Process prevalence incidents
* Impact modifiers (severity) o Example Instances

* Related Processes

. * Related Weaknesses
* Execution Flow




Proposed method: Main steps T o

* Defining COPEs

* Defining (temporal) patterns that can be used for identifying the COPEs
within the raw data (sensor data, network data...)

* Looking for COPEs within raw data provided

* |[dentify COPEs’ instances within the data in cybersecurity tasks
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Creating a COPE

Raw Water
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4 Transmitter

e consult domain ex pe r{s... «  DPITTxty: Differntial Pressure
Indicator Transmitter

FITx0y: Flow Indicator Transmitter
LITxOy: Level Indicator Transmitter
MVx0y: Motorised Valve
Px0y: Pump
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X = component # ; y = process
module#



L, I
B Includes I is L«;‘ e
" Extends '

Generating
Electricity
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Data-driven approach v N

* Using Karmalego — temporal pattern mining algorithm

COPE7

COPEb6

COPE aggregation:
situational awareness

COPEb6

COPEs:

Low-level data: Sensors, actuators, PLC N
ow-level data: Sensors, s, PLC, ;_qﬂ TR e i I E!

network traffic (SCADA, IT) Historian A
Sensor Actuator PLC HMI

SCADA + Engineering
Workstation




Karmalego - illustration

* First step — defining temporal abstractions
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Example: Filling water COPE pattern - iﬂ"ﬁ
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Pattern mapping to COPEs
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Pattern mapping to COPEs
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Visualization of Frequent Patterns — Tabular View
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Visualization of Frequent Patterns — Graphical View s 1@"
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Proposed method: Main steps

* Defining COPEs
* Defining (temporal) patterns that can be used for identifying the COPEs within the raw data

(sensor data, network data...)
» define temporal abstractions on raw data
* apply Karmalego algorithm on the temporal abstractions and identifying temporal patterns at different

levels of abstractions

* Looking for COPEs within raw data provided
* Using an existing advanced visualization tool for investigating the patterns: (1) link between an identified
pattern and predefined COPE; (2) identify interesting pattern and define it as a COPE

 Utilizing COPEs and identified instances within the data in cybersecurity tasks

* Anomaly/attack detection
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Dataset — SWaT (2015-2021) o RS

e SWaT — Secure Water Treatment Testbed

°*6 Stages (Intake, Filtering, UV, Reverse Osmosis, Backwash)

* 49 Sensors
e 11 Days of continuous operation
* Access to Raw Data

Fig. 1: Actual Photograph of SWaT testbed
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Dataset — SWaT (2015-2021) g ik
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Results TT R S

61 COPEs were defined by the expert (i.e., the expert-based phase)
» Coverage of 26 sensors/actuators (Out of 49)

KarmaL)ego detected ~20K patterns; only 162 of them were relevant (involving the relevant
Sensors

* Requires Pre-Processing (data abstraction) using EWD, EFD, SAX, Gradient, etc.

Following the investigation of the generated patterns, additional 24 new COPEs were identified
85 COPEs in total
During the manual investigation we were able to match 74 temporal patterns and COPEs

87% success rate; 54% false patterns



P4 dichlorination using UV
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Results: examples
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Example — water intake - N
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P1 filling the water tank
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Tank draining

No inflow
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P1 filling the water tank

water can flow out

Tank draining
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B Includes
P1 filling the water tank | Extends
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Conclusions

 COPEs — good foundation for representing ICS processes

* A COPE may have several possibilities for defining patterns
e Usage of different set of sensors
 Different state of said cope (draining hot water vs draining cold water)

* Needs to improve coverage

* Next steps
* Implement on additional cases/ICSs
* Integrate within an anomaly/attack detection task



Thank you!



