BIRD ICRDE: Task 17 - ICS Security by Design

Empowering the Future: Security by Design in the Energy Sector

Introduction

Task 17 deals with the future

= > We are not bound to current concepts

We are not trying to predict the future; we try to be visionary

We propose a framework for achieving the Security by Design goal

Assumptions and prerequisite

Law and regulations

Industry requirements will force the use computerized devices at all levels of the Purdue model

We do not negate any security standard, or best practice, but rather, we mandate them

We already propose a framework consists of

Constructing an ecosystem that includes all participants

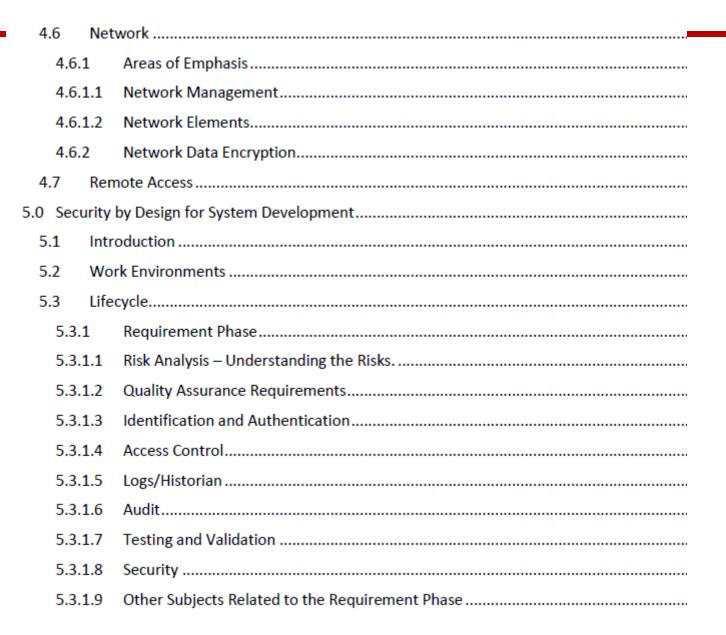
Non-technological Issues

Technological Issues

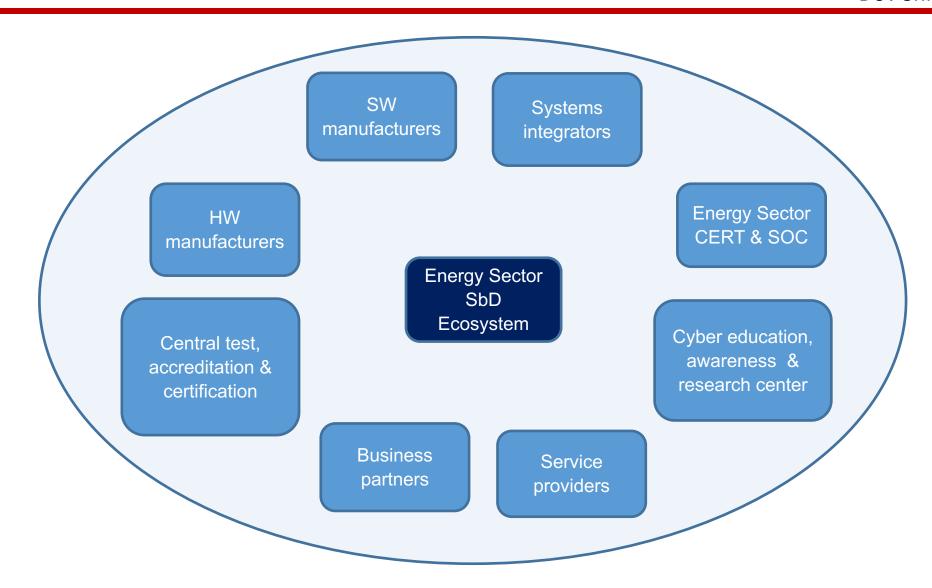
Presented in report meeting #4

Table of Contents

l.	Pref	ace			
	1.1	The Purdue Model			
2.	Preliminaries				


2.	. Prel	limina	ninaries				
2.1		Objective					
2.2		Applicability					
	2.3	Obligations of the Energy Sector Ecosystem's Organizations					
P	art I – S	SbD Non-Technological Issues					
1. Governance							
3.2		Board of Directors					
		Seni	or Management				
		Inter	nal Audits				
	3.4	The	Chief Information Security Officer				
	3.4.	1	Appointment				
	3.4.	2	CISO's place within the Organizational Hierarchy				
			O – Technological Issues				
	4.2	Stan	dards, Best Practices, and Accreditation				
	4.2.	1	List of Standards, Best Practices, and frameworks				
	4.3	Asse	t Management				
	4.3.	1	Inventory				
	4.3.	2	Ownership				
4.3		3	Acceptable Use				
	4.3.	4	Asset Mapping and Classification				

1.4	Security Infrastructure Requirements			
4.4.1	Access Controls			
4.4.2	Remote Access Controls			
4.4.3	Encryption			
4.4.4	Certificate Mechanisms			
4.4.3	Date and Time Synchronization			
4.4.4	Audit Logs			
4.4.5	Data Integrity			
4.4.6	non-Repudiation			
4.4.7	Data in Motion			
4.4.8	Data at Rest			
4.4.9	Data in Use			
4.4.1	0 Physical Security			
4.4.1	1 Maintenance			
4.4.1	2 Risk Assessment and Audit Activities			
4.4.1	3 SIEM/SOC			
.5 Architectural Elements				



Dov Shirtz

Framework - Ecosystem

Artifacts, Integrators,

SbD for the energy sector May 2023

Standards, regulations, Best Practices, Security, Quality, testing

Security by Design Requirements

Integrator

SW products

HW products

Networking

ISO 27K, NIST CSF, NIST SP 800-82 ISA/IEC 62443 ISO/IEC 12207, ISO 9000, MITRE ATT&CK

This presentation

The question was how do we see the future end node

Topics

- End node
- Connectivity

End Node

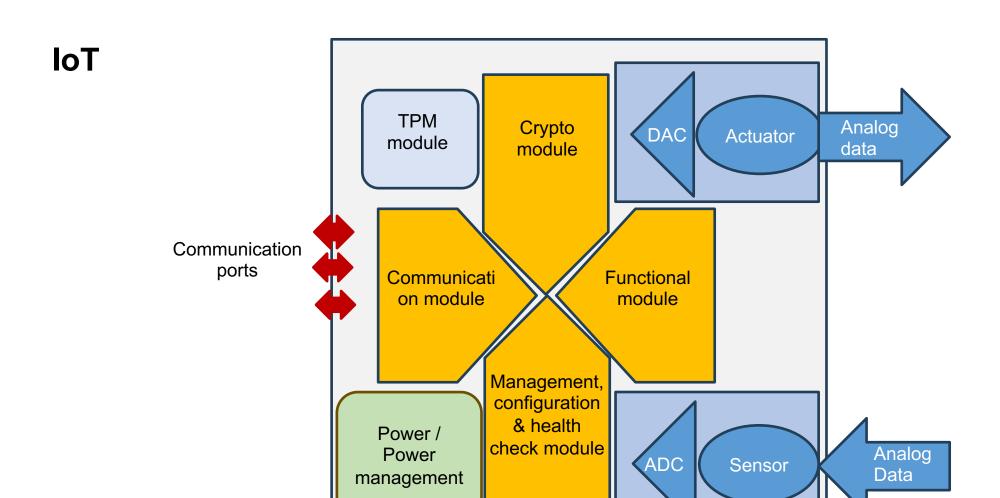
End nodes

Definition: End node

"a peripheral unit in a network, or a primary designated unit within that network.

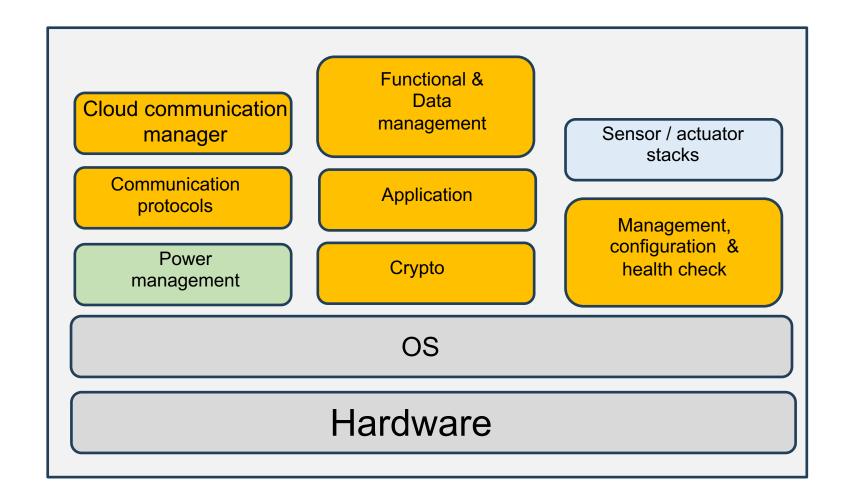
IT professionals and others use the term "end node" to specify a certain hardware component of a network that has its own role and properties within that network system." [2]

End nodes


Requirements

- Functionality the physical functionality sensor, actuator, switch, ...
- Connectivity as today, not directly to the immediate upper layer, to the cloud,
- Robustness to side channel attacks, "regular" cyber attacks
- Security encryption of communication, digital signature
- Visibility health check
- Speed and Parallelism real time, near real time
- **Maintenance** timely, secure and easy

End nodes – hardware components HL diagram (partial)

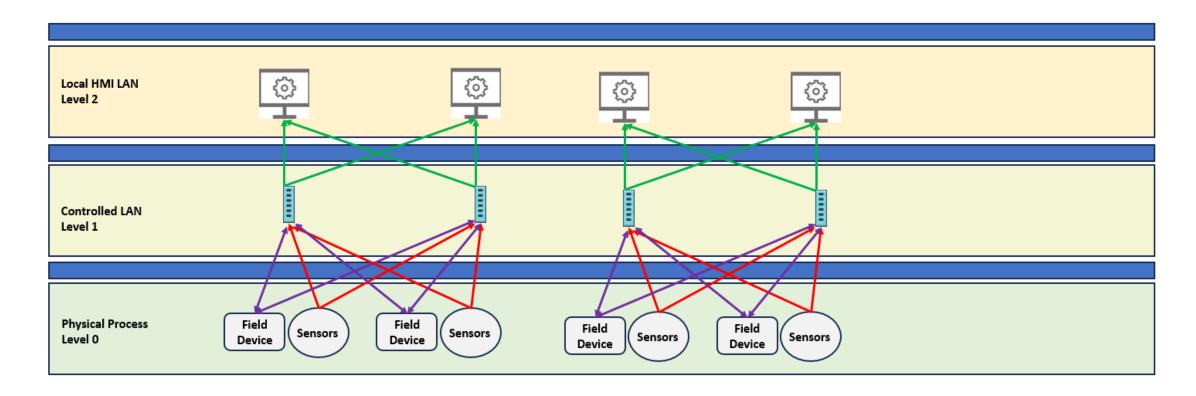


End nodes – logic perspective diagram

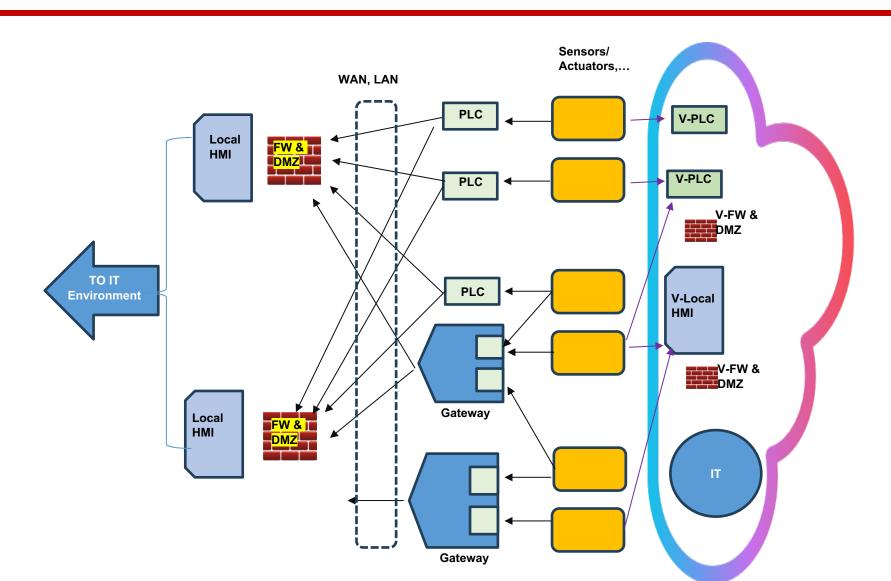
IoT

End nodes – benefits from the suggested infrastructure

- Higer level of cyber security
- Potential edge computing capabilities
- Simultaneous cloud and non-cloud connectivity
- Potential of using Zero trust (ZT) and moving target defense (MTD) capabilities
- Certificate access control


Connectivity

Connectivity



Duplication

Connectivity - variants

Connectivity - variants

PLC)

#	Connection 1	Connection 2	Remarks
1	Physical PLC	Physical PLC	Same as today except the requirement to
			duplicate the number of connections
2	Physical PLC	Gateway	We assume a gateway with PLC capability.
			Moreover, we assume that the gateway
			converges the Physical PLC and the gateway
			that communicate to the upper levels of the
			Purdue model, e.g., HMI
3	Gateway	Gateway	We assume a converge of PLC and gateway
			that communicate to the HMI.
4	Physical PLC	Virtual PLC (V-PLC)	Virtual PLC is a software code that resides in
			the cloud. Communication to it may be set in
			various protocols, e.g., 5G, Wi-Fi, etc.
5	Virtual PLC (V-	Virtual PLC (V-PLC)	See (4) above. The connectivity can be done

to the very same cloud to different PLCs, or

to two different clouds.

Connectivity – Derived benefits

- Edge computing
- Maintenance
- Cloud
- Cyber robustness and resilience
- Using advance cyber security methods

Zero Trust (ZT)

Moving target defense (MTD)

Connectivity – Derived changes

Issues derived from the new form of connectivity

Algorithm changes

Work method change

Conclusion

- It's a long way
- Cost
- Better Cyber security
- Security by Design

Conclusion

We achieve

Encryption

Authentication

Visibility

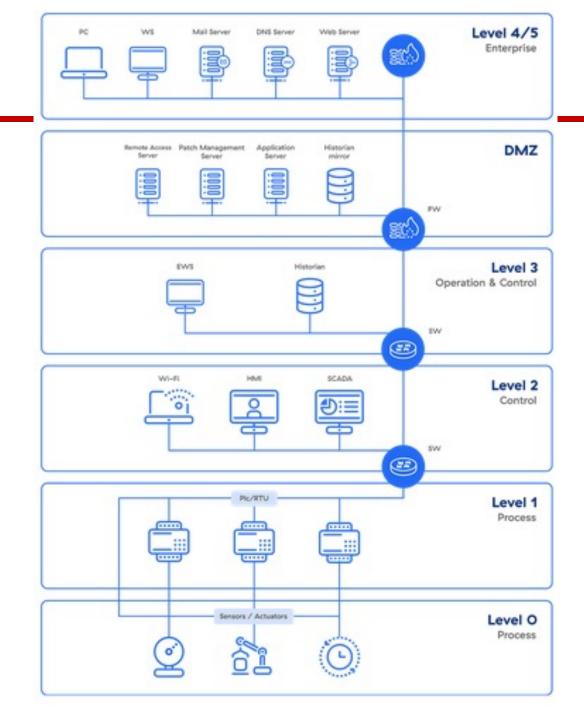
Blockchain

Zero trust

Digital twin

Network segmentation

BIRD ICRDE: Task 17 - ICS Security by Design


End of

Empowering the Future:

Security by Design in the Energy Sector

Questions Please

Purdue – basic model

