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Power Grids: Large and Diverse Action Space - RS

A Topology action  #asbar ! Basbar 2

Type: Discrete
Order = O(n!) —_—

Status Action

Type: Discrete
Order = 0(2™)

Discrete actions:
» Topology actions: changing the topology of certain substations (TG)
* Status actions: transmission or power line switching (PLS)

¢ = Re-dispatch
Action

Type: Continuous
Range: [Py in: Prmax)

Action Space

p Curtailment

Action
Type: Continuous
Range: [Pyin: Prmax)

Continuous actions:

* Redispatch actions: changing the operating schedule of power plants
* Curtailment actions: limiting the production of renewable generators
» Set-storage actions: changing the role of some storage units from

Set Storage .
E € loads to generators or vice versa

Action
Type: Continuous
Range: [Emin, Emax]

Example: IEEE 118-Bus system: about 12 million possible
actions
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Power Grid on Grid2op Platform
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A Power Grid Network
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Line Graph of Power Grid Network
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TGCN: action specific (e.g., five different TGCNs
depending on the action types)

Input: currents from all nodes in the line graph
Output: currents from all nodes 1n the line graph
Training data: Grid2op simulations



Heterogeneous TGCN Framework

Reinforcement- Learning Action Types
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¢ Re-Dispatch
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Type: Continuous
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Correlation of Line Current Flow under Attack e
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Correlations are neither too small nor too large, justifying TGCN
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TGCN Aided RL for Optimal Agent Selection Under Attack I'I' ﬁI“" L=
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Examples of TGCN Prediction
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Selection of Controller Based on TGCN Prediction Tﬂ' ?‘W

Agent Selection Frequency based on Decision Threshold
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Ongoing Commercialization Efforts i (N

The ASU Task 16 team is working with John Dirkman’s team at Resource Innovations Nexant to implement the principle and
methodologies of reinforcement learning control of cyber physical systems into the existing industrial software tools.

RI Team: John Dirkman, Guanji Hou, Narsi Vempati, Roozbeh Emami
ASU Team: Mohammadamin Moradi, Zheng-Meng Zhai, Ying-Cheng

Lai
* Motivation: Reinforcement learning (RL) plays an increasing role in defending the critical infrastructures against

cyberattacks. However, even for small power grids, the action space of RL is large, rendering efficient exploration
by the RL agent practically unattainable.

* Basic research: developed RL methods solve the large action space problem in the power grid security setting by
exploiting TGCNs [ a parallel but heterogeneous RL framework.

» Idea: Dividing the action space into smaller subspaces, each explored by a RL agent, and employing a series of
TGCN s to efficiently organize the spatiotemporal action sequences by accurately predicting the performance of each
individual RL agent in the event of an attack.

* Methodology: Selecting the top performing agent, resulting in the optimal sequence of actions.

* Numerical demonstration: Using TGCN to capture both the temporal and spatial dependencies of the graph
structured data from IEEE 5-bus and 14-bus systems.

* Significance: TGCN framework [] a computationally efficient framework for generating the best course of actions
to defend cyberphysical systems against attacks.



Ongoing Commercialization Efforts — Example 1 - ﬂ“ '

Issues addressed at the July 24 Meeting:

* Agents' Response to False Detection: Explained about how agents react to false detections.

» Agents' Compatibility with Different Action Spaces: Talked about the possibility of combining agents with
various action spaces to improve performance.

* Defining Custom Environments from Time Series: Discussed the process of defining custom environments
using time series data.

* Extending Existing Data to Create Custom Environment: Discussed about leveraging the existing data as a
foundation for extending it into a custom environment.

* Computational Burden of Environment Definition: Raised concerns about the computational burden of
defining a custom environment.

* Feasibility of obtaining Time Series from Customers: John Dirkman confirmed the feasibility and validity
of obtaining time series data from customers.
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Ongoing Commercialization Efforts — Example 2 - RS

Issues addressed at the August 8 Meeting:

* Guanji’s inquiry about the code flow, seeking a clear understanding of the overall logic and
module interactions.

* A detailed explanation of inputs required for the TGCN module.

* Guanji’s questions about the roles of TensorFlow and Grid2Op in the project, emphasizing
their contributions to deep learning and power grid simulation, respectively.

* Clarification provided on the roles of various agents within the project.

* A demonstration of custom environment creation flow, along with a display of chronics for
predefined environments.
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Future Research (1)

* Continue to work closely with our —
industrial collaborators to test the e 2
heterogeneous RL/TGCN framework
on real power grids using empirical
data to bring the innovative
cyberdefense framework closer to
commercialization.

e Address the i1ssue of limited
available cyberdefense resources by

incorporating  preferences into Preferential cyber defense for power grids
heterogeneous RL/TGCN for

protecting large smart power grids.
This requires theoretical formulation 1School of Electrical, Computer and Energy Engineering,
q > Arizona State University, Tempe, AZ 85287, USA

numerical test, and exploration for 2 Resource Innovations, 719 Main Street, Half Moon Bay, CA 94019, USA
commercialization. 3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
(Dated: July 27, 2023)

Mohammadamin Moradi,® Yang Weng,! John Dirkman,? and Ying-Cheng Lail»3:*

PRX Energy, in press



Future Research (2) TT .:i,ﬂ.

Investigate the practical issue of partial state observation by developing an LSTM
(long short-term memory) based framework for attack detection and full state
estimation. Commercialization will be explored.
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Future Research (3)

*

S

S

S

Develop a comprehensive framework for probing the
“uncharted” to solve the fundamental problem of
exploration in machine learning, in particular RL.

The problem is motivated by the fact that exploration
plays a critical role in RL by enabling agents to
discover optimal policies in unknown environments,
but how this can be efficiently done remains to be a
challenging problem.

We propose an efficient approach to exploring the
uncharted by leveraging automata theory and mixed
integer programming, which enables the agent's
behavior to be captured and the temporal or dynamic
aspects of exploration to be modeled accurately for
effective decision making and discovery of novel
states.

If successful, this will open a new area of research in
Al and Machine Learning as applied to cyberphysical
systems, with immediate applications to power grids.
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