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Power Grids: Large and Diverse Action Space

Example:  IEEE 118-Bus system: about 12 million possible 
actions

Discrete actions:
• Topology actions: changing the topology of certain substations (TG)
• Status actions: transmission or power line switching (PLS)

Continuous actions:
• Redispatch actions: changing the operating schedule of power plants
• Curtailment actions: limiting the production of renewable generators
• Set-storage actions: changing the role of some storage units from 

loads to generators or vice versa



Test includes questions from the 5 books
(Grid under attack) 
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A Power Grid Network

Benchmark RTE 14 Bus System:

• 14 substations
• 20 transmission lines
• 5 generattors
• 11 loads



Line Graph of Power Grid Network



Temporal Graph Convolutional Neural Network (TGCN)

• TGCN: action specific (e.g., five different TGCNs 
depending on the action types)

• Input: currents from all nodes in the line graph
• Output: currents from all nodes in the line graph
• Training data: Grid2op simulations



Heterogeneous TGCN Framework



TG AgentPLS Agent

Correlation of Line Current Flow under Attack

Correlations are neither too small nor too large, justifying TGCN



TGCN Aided RL for Optimal Agent Selection Under Attack



Examples of TGCN Prediction



Selection of Controller Based on TGCN Prediction



Ongoing Commercialization Efforts 

The ASU Task 16 team is working with John Dirkman’s team at Resource Innovations Nexant to implement the principle and 
methodologies of reinforcement learning control of cyber physical systems into the existing industrial software tools. 

RI Team: John Dirkman, Guanji Hou, Narsi Vempati, Roozbeh Emami
ASU Team: Mohammadamin Moradi, Zheng-Meng Zhai, Ying-Cheng 
Lai

• Motivation: Reinforcement learning (RL) plays an increasing role in defending the critical infrastructures against 
cyberattacks. However, even for small power grids, the action space of RL is large, rendering efficient exploration 
by the RL agent practically unattainable. 

• Basic research: developed RL methods solve the large action space problem in the power grid security setting by 
exploiting TGCNs � a parallel but heterogeneous RL framework. 

• Idea: Dividing the action space into smaller subspaces, each explored by a RL agent, and employing a series of 
TGCNs to efficiently organize the spatiotemporal action sequences by accurately predicting the performance of each 
individual RL agent in the event of an attack. 

• Methodology: Selecting the top performing agent, resulting in the optimal sequence of actions. 
• Numerical demonstration: Using TGCN to capture both the temporal and spatial dependencies of the graph 

structured data from  IEEE 5-bus and 14-bus systems. 
• Significance: TGCN framework � a computationally efficient framework for generating the best course of actions 

to defend cyberphysical systems against attacks.



Ongoing Commercialization Efforts – Example 1 

• Agents' Response to False Detection: Explained about how agents react to false detections.
• Agents' Compatibility with Different Action Spaces: Talked about the possibility of combining agents with 

various action spaces to improve performance.
• Defining Custom Environments from Time Series: Discussed the process of defining custom environments 

using time series data.
• Extending Existing Data to Create Custom Environment: Discussed about leveraging the existing data as a 

foundation for extending it into a custom environment.
• Computational Burden of Environment Definition: Raised concerns about the computational burden of 

defining a custom environment.
• Feasibility of obtaining Time Series from Customers: John Dirkman confirmed the feasibility and validity 

of obtaining time series data from customers.

Issues addressed at the July 24 Meeting:



Ongoing Commercialization Efforts – Example 2 

Issues addressed at the August 8 Meeting:

• Guanji’s inquiry about the code flow, seeking a clear understanding of the overall logic and 
module interactions.

• A detailed explanation of inputs required for the TGCN module.
• Guanji’s questions about the roles of TensorFlow and Grid2Op in the project, emphasizing 

their contributions to deep learning and power grid simulation, respectively.
• Clarification provided on the roles of various agents within the project.
• A demonstration of custom environment creation flow, along with a display of chronics for 

predefined environments.
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• Continue to work closely with our
industrial collaborators to test the
heterogeneous RL/TGCN framework
on real power grids using empirical
data to bring the innovative
cyberdefense framework closer to
commercialization.

Future Research (1) 

• Address the issue of limited
available cyberdefense resources by
incorporating preferences into
heterogeneous RL/TGCN for
protecting large smart power grids.
This requires theoretical formulation,
numerical test, and exploration for
commercialization.

PRX Energy, in press



· Investigate the practical issue of partial state observation by developing an LSTM
(long short-term memory) based framework for attack detection and full state
estimation. Commercialization will be explored.

Future Research (2) 



❖ Develop a comprehensive framework for probing the
“uncharted” to solve the fundamental problem of
exploration in machine learning, in particular RL.

❖ The problem is motivated by the fact that exploration
plays a critical role in RL by enabling agents to
discover optimal policies in unknown environments,
but how this can be efficiently done remains to be a
challenging problem.

❖ We propose an efficient approach to exploring the
uncharted by leveraging automata theory and mixed
integer programming, which enables the agent's
behavior to be captured and the temporal or dynamic
aspects of exploration to be modeled accurately for
effective decision making and discovery of novel
states.

❖ If successful, this will open a new area of research in
AI and Machine Learning as applied to cyberphysical
systems, with immediate applications to power grids.

Future Research (3) 


