Task 14

SubProcess BFT++:

Robust Cyber Attack Resilience for
Production Industrial Control Systems

Dr. Sukarno Mertoguno
Dr. Bo Feng
Muhammad Faraz Karim

Georgia Institute of Technology

J
kb oo
\\

- e
m:r:‘) 6 ‘

Subsystems:
* Physical Subsystems

e Cyber Subsystems

— IT Space
— Controller Space (our focus)

CPS Security Space

IT Space :

— Monitoring & intrusion detection is relatively easier due to predictability of CPS
operation - industry already working on this space

— Encryption & authentication — many researchers & industry already
working on this space

Controller Space :

— Knowledge/ModeI dependent (e.g. digital twin, intrusion detection at controller bus level, etc) -

many researchers & industry are working on this
— Encryption & authentication — researchers & industry already working on this
space
* limited computing capacity,
* authentication is very relevant,

* but encryption is less so in majority of applications (data is low-level, state
dependent & temporal/short-lifetime)

— Mechanism (knowledge independent) — our focus

Leveraging Key Properties of CPS

Periodicity

e Continuous observe and control loop
(scan cycle, usually ~1-100 Hz)

PLC Scan
O
o
SO
o’%‘, 2 ‘o\o‘\&‘\
n .uo%»&

= ““,uts

Periodicity provides tolerance
for loss of input

J

* Sensitive to latency variations
* Not performing open-ended, general-
purpose tasks like IT

Inertia

Physical systems have inertia

Effect: can tolerate some bad cycles
and still maintain stability
— Missed output

— Wrong output (sensor blip, etc.)
In context of cyber attack:

:

Inertia provides some
natural fault tolerance

Not immediately uncorrectable
How long is system-dependent

Process of a cyber exploits

Vulnerable Software /

Attack 1. Tackle 2. Recover

Successful Exploit This Address
Vulnerabhility must point to
Compromised Maware

intended code

Successful attack requires:
1. Success on derailing targeted program --> targeted program loses control
2. Success on capturing control > attacker controls program execution

Traditional Fault Tolerance

Many systems already employ some type of fault tolerance for
physical and random failures:

Redundancy with voting/consensus
Quad Redundant Control (QRC)
Byzantine Fault Tolerance (BFT)

[BFT allows] systems to continue to work correctly even when there are software errors. Not all errors
are survivable; our approach cannot mask a software error that occurs at all replicas.

However, it can mask errors that occur independently at different replicas, including non-
deterministic software errors

Challenge:

Stream of inputs

Traditional Fault Tolerance

Divert:
Own: jmp 4

0101 0011 Divert: _‘
1011 0110 own: jmp 4 .
Divert:

Own: jmp 4

Types of Diversity

e Execution level diversity

— Same algorithm, same source code
— Diversifying compiler (DARPA-CRASH)
— Binary diversifying transformer (ONR, DARPA-CFAR)

* Algorithmic diversity
— Different algorithm - different source code

— Exp.: sort = quick sort, bubble sort, merge sort & all sort of sort
stuffs.

[BFT++ assumes Execution Level Diversity

16

Key Elements of BFT++

Controller recovery

Techniques work together to provide resiliency against cyber attack-induced failures
Detects variance and

Artificial diversity
restores controller(s) to

Protects controllers from being owned
\ known good state
Engineered FastCrash
Limits time spentin \ 7

corrupted state

Primary

Output

Delay FIFO (D)

/

Delayed input sharing
Keeps backup in clean state and isolates malicious trigger

Successful attack requires:
1. Success on derailing targeted program [targeted program loses control
2. Success on capturing control [attacker controls program execution

Example: controller resilience

2 steps required to exploit a controller:

0101 0011 Divert: . Output
1011 0110 Own: jmp 4 .
Divert: 2
Own: jmp 4

Backup

Artificial Diversity

, Divert:
Own: jmp 4
Stream of inputs _
0101 0011 X . Divert: <& ‘ Output
1011 0110 | own: jmp 7 -
. Divert:

Own: | 2
Jmp Backup

Successful attack requires:
* Success on derailing targeted program [targeted program loses control
* Success on capturing control [attacker controls program execution

Artificial Diversity

Divert: &2 Owned
mp4 Own: jmp 4
Stream of inputs _
0101 ‘ . Divert: < Crashed = Output
1011 jmp 4 own: jmp 7 .

mpa’ Own JmpZ ek
ackup

Effect: 1 owned, others crashed

Controller Recovery

e |If we do not need to save controller state:
= Restore from a cold backup

* |f we need to restore with state, need a hot/warm
backup

= But how can we keep a hot backup that does not
crash or get owned?

 Must maintain a known good state,
* check-pointing but it is expensive,
e or may be not for LEGACY stuffs

Delayed Input Sharing

. Divert: =
Own: jmp 4
Stream of inputs _

0101 0011 X . Divert: { Output
101 0110 Oown: jmp / .

> Divert: =
Own: jmp 4
FIFO queue, length D

»

Delayed Input Sharing

Detected vulnerabllity:

e Divert: &z Owned
jmp 4 Oown: imp 4

Stream of inputs

0101 . & Divert: Output
1011 jmp 4 Own: mp 7

0011
jmp4 || 0110

FIFO queue, length D

Healthy
Divert:

Own: imp 4

>

Effect: 1 owned / 1 crashed, but C1’s crash trigger is sitting in FIFO queue for C2

Existing BFT++ variants

BFT++ v1 (Vanilla) — NRL

- Multiple replicated devices with artificial
software diversity to detect attacks

- A device replica with delayed input to
promptly recover from attacks

- More robust security guarantee

- Less service disruptions

- Higher cost (due to device replica)

input

CO

C1

Output

\ 4

C2

Existing BFT++ variants

BFT++ (YOLO) — Columbia University

- Firmware diversification (to probabilistically
prevent and detect attacks)

- Frequent reset (to recover from attacks)

- Lower cost

- Probabilistic security guarantee

- More disruptions (due to frequent reset)

INPUT

Co

Y

e ——————————

OUTPUT

o ~.

/

—

L7

[——

SubProcessBFT++

- Goal:
- Robust defense: as robust as the Vanilla variant
- Low cost: comparable to the YOLO variant
- Approach:
- Operate on the subprocess level (the previous variants of BFT++ operate on the whole
program)
- For each subprocess, determine to duplicate (similar to vanilla variant) or randomize (similar to
YOLO variant)
- Diversify each subprocess according to profile & available slack

[Ladder logic

lec2c compiler

SubprocessBFT++ Workflow

Our addition to the

build process

-

.

~

Diversification

Diversification policy

-

) Subprocess
C code for PLC logic |dentification
o
B
PLC
runtime Subprocess
runtime & slack

Profiling

Y

generation

Multicompiler

{

Subprocess BFT++
protected
PLC binary

|

(Diversification
compiler)

Subprocess BFT++ workflow

Subprocess

- A single component of the ladder logic of a PLC program.

Subprocess

A single component of the ladder logic of a PLC program.

F_TRIGO TOFO

F_TRIG OR TOF
O_LEDOrange CLK 0 IN1 OUT IN

IN2 PT ET [~
First_cycle

T#6s

O_LEDRed

F_TRIG1 TOF1

F_TRIG TOF
O_LEDOrange
O_LEDGreen CLx 9 IN Q i g

PT ET

T

F_TRIG2 TOF2

F_TRIG TOF
O_LEDGreen
0O_LEDRed CLK 0 IN Q »

PT ET |-

Subprocess

- A single component of the ladder logic of a PLC program.

F_TRIGO TOFO

F_TRIG OR TOF
0_LEDOrange CLK @ IN1 ouT IN Q -O_LEJDRed
PT BT |

= -1
IN2
First_cycle

T#6s

F_TRIG1 TOF1
F_TRIG TOF

O_LEDOrange
0_LEDGreen Cix @ N Q = i
PT ET |-

F_TRIG2 TOF2

F_TRIG TOF
O_LEDGreen
0_LEDRed CLx @ N 9 -
PT ET [

T#6s

Translated c-code

// Code part
void TRAFIC_LIGHT body (TRAFIC_LIGHT *data_) {
// Initialise TEMP variables

__SET_VAR(data__->F_TRIGO.,CLK,, GET_LOCATED(data__->0_LEDORANGE,));
F_TRIG_body__ (&data__->F_TRIGO);
__SET_VAR(data__->, TMP_OR67_OUT,,OR__BOOL__BOOL(

(BOOL) __BOOL_LITERAL(TRUE),

NULL,

(UVINT)2,

(BOOL)__GET_VAR(data__->F_TRIGO.Q,),

(BOOL)__GET_LOCATED(data__->FIRST_CYCLE,)));
__SET_VAR(data__->TOF@.,IN,, GET_VAR(data__->_TMP_OR67_OUT,));
__SET_VAR(data__->TOF0.,PT,,__time_to_timespec(1, 0, 6, 0, 0, 0));
TOF_body__(&data__->TOF0);
__SET_LOCATED(data__->,0_LEDRED,, GET_VAR(data_ ->TOF0.Q,));
__SET_VAR(data__->F_TRIG1.,CLK,, GET_LOCATED(data__->0_LEDGREEN,));
F_TRIG_body__(&data__->F_TRIG1);
__SET_VAR(data__->TOF1.,IN,, GET_VAR(data__->F_TRIG1.Q,));
__SET_VAR(data__->TOF1.,PT,,__time_to_timespec(1, 0, 4, 0, 0, 0));
TOF_body__(&data__->TOF1);
__SET_LOCATED(data__->,0_LEDORANGE,, GET_VAR(data__ ->TOF1.Q,));
__SET_VAR(data__->F_TRIG2.,CLK,, GET_LOCATED(data__->0_LEDRED,));
F_TRIG_body__(&data__->F_TRIG2);
__SET_VAR(data__->TOF2.,IN,, GET_VAR(data__->F_TRIG2.Q,));
__SET_VAR(data__->TOF2.,PT,,__time_to_timespec(1, 0, 6, 0, 0, 0));
TOF_body__(&data__->TOF2);
__SET_LOCATED(data__->,0 LEDGREEN,, GET_VAR(data__ ->TOF2.Q,));
__SET_LOCATED(data__->,FIRST_CYCLE,, BOOL_LITERAL(FALSE));

Slack

Time remaining after a task finishes before the next task or event is scheduled
Greater usable slack allows for more subprocesses to be protected by
replication in subprocessBFT++

UsableSlack = CycleTime— ReservedS lack—z SubprocessTime

|

This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor
Users can also specify a reserve of Scan cycle for their systems to retain

Slack

Time remaining after a task finishes before the next task or event is scheduled
Greater usable slack allows for more subprocesses to be protected by
replication in subprocessBFT++

UsableSlack = CycleTime— ReservedS lack—z SubprocessTime

\

This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor
Users can also specify a reserve of Scan cycle for their systems to retain

Slack

Time remaining after a task finishes before the next task or event is scheduled
Greater usable slack allows for more subprocesses to be protected by
replication in subprocessBFT++

UsableSlack = CycleTime— ReservedS lack—z SubprocessTime

This Usable slack comes from the tim INg in the Scan Cycle after
deducting the time allocated to all subprocess on the processor
Users can also specify a reserve of Scan cycle for their systems to retain

Slack

Time remaining after a task finishes before the next task or event is scheduled
Greater usable slack allows for more subprocesses to be protected by
replication in subprocessBFT++

UsableSlack = CycleTime— ReservedS lack—z SubprocessTime

This Usable slack comes from the ting€ remaining in the Scan Cycle after
deducting the time allocated to allgubprocess on the processor

Users can also specify a percentage of Scan Cycle for their systems to retain
even after securing it with SubprocessBFT++

OpenPLC and firmware profiling

We have edited the OpenPLC compilation process to profile the subprocesses
and how much time they take on the MCU in a single cycle

Allows us to measure in real time the amount of usable slack available in the
system

OpenPLC and firmware profiling

1 faraz@faraz-virtual-machine: ~/Desktop Q =
First column: The sum time allocated to all farazefaraz-virtual machine: $ cat slack_time.cap
subprocesses in a single cycle 7179, 9948

, 9954

Second column: The total cycle time

* . . , 9950
all measurements in microseconds

, 9941
» 9949
o CEEL)
, 9939
, 9956
, 9948
, 9951
, 9936
, 9951

, 9952

, 9939

Slack Calculation

1 faraz@faraz-virtual-machine: ~/Desktop Q =

- Lets calculate the slack considering as a user : e

total_used, cycle_time

we want to reserve 25% of the cycle slack

7179, 9948

*All calculations in microseconds » 9954

, 9950
*Using averages of the last 500 values when run for 1 minute

, 9941

Total Slack = (9948) - (7175) = 2773 7179, 9949
, 9939
Reserved Slack = 2773 * 0.25 = 693 , 9939
, 9956
Usable Slack = (2773) - (693) o

s 9951
= 2080 micro seconds 9936
, 9951

, 9952

, 9939

Discussion

The greater the value of the slack with respect to the total time occupied by
subprocesses the more we are able to use the duplication technique which
has a greater level of security

Replication not possible for all subprocesses as we do not have enough usable
slack

Subprocess identification
Slack profiling

Diversification

Diversification policy generation

Diversification

Profiled PLC
source code

Diversification

Diversification policy
generation

User input
for slack

Decision

(

algorithm

Multicompiler

Single copy diversification

(YOLO-based)

Subprocesses duplication
(Vanilla-based)

L

Subprocess BFT++
protected
PLC binary

Diversification by multicompiler

Multicompiler is our choice of diversification tool as it works on source code
build by Michael Franz in UCI

LLVM-based compiler to create artificial software diversity to protect software
from code-reuse attacks.

However, it works only for x86 targets. We ported it to ARM, a popular
architecture for PLCs

Prototyping with OpenPLC

Open-source Programmable Logic Controller
development environment 0 PE N PLc < >
TO A MORE

Widely used in industrial, home automation, and OPEN FUTURE

Internet of Things.

Can produce PLC programs for a wide range of
hardware, from Raspberry Pi to cloud servers

Very practical for automating legacy systems
since it can run on a range of hardware, and
does not require great processing power

Prototyping with OpenPLC

Our decision algorithm runs when OpenPLC
compiles the firmware and decides which part of 0 P E N P L c
the system is protected by which methodology

TO A MORE
The OpenPLC compilation workflow is also edited OPEN FUTURE

to allow for compilation using multicompiler

Our experiments used the Arduino
NanoRP2040Connect

[Ladder logic

lec2c compiler

SubprocessBFT++ Workflow

Our addition to the

build process

-

.

~

Diversification

Diversification policy

-

) Subprocess
C code for PLC logic |dentification
o
B
PLC
runtime Subprocess
runtime & slack

Profiling

Y

generation

Multicompiler

{

Subprocess BFT++
protected
PLC binary

|

(Diversification
compiler)

Subprocess BFT++ workflow

Potential of SubprocessBFT++

check 00 e SubProcess BFT++ Engineering Tool
wEFFEREE -

, 8“7% '20% R
ormally d
T e N\ . :‘J] .EE..I Slack
%
o BN : E%)
] i -
3

SubP:::ess BFT::%
Significantly widen the applicability of BFT++ and provide resilience against direct cyber-attack
Providing cyber attack resilience for application which cannot afford device redundancy, alleviate the
need for redundant device in SubprocessBFT++
Provide a degree of user control over the security to cost ratio
Layered defence Automated isolation of offending data, which can be communicated to other system
components, e.g. SCATOPSY, RAM2,, to prevent repeat attack.
Integration into OpenPLC design environment for ease of deployment and dissemination.
Discussion with Siemens for potential integration of SubprocessBFT++ into with their PLCs for the
purpose of commercialization.

e

E L
- | || S
'E. co

Thank you

QRC++

- Practically the same thing as
BFT++

- Only difference being instead of
3 it has a total of 4 redundant
copies

Input

Primary

Backup

Delay FIFO (D)

Output

