
Task 14
SubProcess BFT++:
Robust Cyber Attack Resilience for
Production Industrial Control Systems

Dr. Sukarno Mertoguno
Dr. Bo Feng
Muhammad Faraz Karim

Georgia Institute of Technology

Subsystems:
• Physical Subsystems
• Cyber Subsystems

– IT Space
– Controller Space (our focus)

5

Cyber Physical Systems

CPS Security Space
IT Space :

– Monitoring & intrusion detection is relatively easier due to predictability of CPS
operation - industry already working on this space

– Encryption & authentication – many researchers & industry already
working on this space

Controller Space :
– Knowledge/Model dependent (e.g. digital twin, intrusion detection at controller bus level, etc) -

many researchers & industry are working on this
– Encryption & authentication – researchers & industry already working on this

space
• limited computing capacity,
• authentication is very relevant,
• but encryption is less so in majority of applications (data is low-level, state

dependent & temporal/short-lifetime)

– Mechanism (knowledge independent) – our focus 6

Leveraging Key Properties of CPS
Inertia

• Physical systems have inertia

• Effect: can tolerate some bad cycles
and still maintain stability
– Missed output
– Wrong output (sensor blip, etc.)

• In context of cyber attack:

Inertia provides some
natural fault tolerance

• Not immediately uncorrectable
• How long is system-dependent

Periodicity
• Continuous observe and control loop

(scan cycle, usually ~1-100 Hz)

• Sensitive to latency variations
• Not performing open-ended, general-

purpose tasks like IT

:

Periodicity provides tolerance
for loss of input

Process of a cyber exploits

Traditional Fault Tolerance
Many systems already employ some type of fault tolerance for
physical and random failures:

Redundancy with voting/consensus
Quad Redundant Control (QRC)
Byzantine Fault Tolerance (BFT)

[BFT allows] systems to continue to work correctly even when there are software errors. Not all errors
are survivable; our approach cannot mask a software error that occurs at all replicas.
However, it can mask errors that occur independently at different replicas, including non-
deterministic software errors

Challenge:
Build Cyber-Attack Tolerance on

Traditional Fault Tolerance

0101
1011 jmp 4

Divert:
Own: jmp 4

Stream of inputs

Traditional Fault Tolerance

0011
0110

C0

C1

C2

Divert:
Own: jmp 4

Divert:
Own: jmp 4

Types of Diversity

16

• Execution level diversity
– Same algorithm, same source code
– Diversifying compiler (DARPA-CRASH)
– Binary diversifying transformer (ONR, DARPA-CFAR)

• Algorithmic diversity
– Different algorithm → different source code

– Exp.: sort → quick sort, bubble sort, merge sort & all sort of sort
stuffs.

BFT++ assumes Execution Level Diversity

Techniques work together to provide resiliency against cyber attack-induced failures

Key Elements of BFT++

Successful attack requires:
1. Success on derailing targeted program � targeted program loses control
2. Success on capturing control � attacker controls program execution

0101
1011 jmp 4

Divert:
Own: jmp 4

Stream of inputs

2 steps required to exploit a controller:

Example: controller resilience

0011
0110

C0

C1

C2

Divert:
Own: jmp 4

Divert:
Own: jmp 4

Output

Backup

0101
1011 jmp 4

Divert:
Own: jmp 4

Artificial Diversity

0011
0110

Divert:
Own: jmp 7

Divert:
Own: jmp 2

Stream of inputs
Output

Backup

C0

C1

C2

Successful attack requires:
• Success on derailing targeted program � targeted program loses control
• Success on capturing control � attacker controls program execution

Output

Backup

0101
1011

Divert:
Own: jmp 4

Artificial Diversity

C0

C1

C2

Divert:
Own: jmp 7

Divert:
Own: jmp 2

Stream of inputs

Effect: 1 owned, others crashed

jmp 4

jmp 4

jmp 4

Owned

Crashed

Crashed

Controller Recovery

• If we do not need to save controller state:
Restore from a cold backup

• If we need to restore with state, need a hot/warm
backup

But how can we keep a hot backup that does not
crash or get owned?

• Must maintain a known good state,
• check-pointing but it is expensive,
• or may be not for LEGACY stuffs

Output0101
1011 jmp 4

Divert:
Own: jmp 4

0011
0110

C0

C1

C2

Divert:
Own: jmp 7

Divert:
Own: jmp 4

Stream of inputs

FIFO queue, length D

Delayed Input Sharing

Delayed Input Sharing

Effect: 1 owned / 1 crashed, but C1’s crash trigger is sitting in FIFO queue for C2

Owned

Crashed

Healthy

C1

C0

C2

in
pu
t

O
ut
pu
t

Existing BFT++ variants
BFT++ v1 (Vanilla) – NRL

- Multiple replicated devices with artificial
software diversity to detect attacks

- A device replica with delayed input to
promptly recover from attacks

- More robust security guarantee
- Less service disruptions
- Higher cost (due to device replica)

Existing BFT++ variants
BFT++ (YOLO) – Columbia University

- Firmware diversification (to probabilistically
prevent and detect attacks)

- Frequent reset (to recover from attacks)
- Lower cost
- Probabilistic security guarantee
- More disruptions (due to frequent reset)

10

1

01

1

11

1

10

1

010

01

1

001

010

10

1

11

1

01

1

11

1

C0

IN
PU

T

O
U

TP
U

T

SubProcessBFT++

- Goal:
- Robust defense: as robust as the Vanilla variant
- Low cost: comparable to the YOLO variant

- Approach:
- Operate on the subprocess level (the previous variants of BFT++ operate on the whole

program)
- For each subprocess, determine to duplicate (similar to vanilla variant) or randomize (similar to

YOLO variant)
- Diversify each subprocess according to profile & available slack

SubprocessBFT++ Workflow

Subprocess
- A single component of the ladder logic of a PLC program.

Subprocess
- A single component of the ladder logic of a PLC program.

Subprocess
- A single component of the ladder logic of a PLC program.

Translated c-code

Slack
- Time remaining after a task finishes before the next task or event is scheduled
- Greater usable slack allows for more subprocesses to be protected by

replication in subprocessBFT++

- This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor

- Users can also specify a reserve of Scan cycle for their systems to retain

Slack
- Time remaining after a task finishes before the next task or event is scheduled
- Greater usable slack allows for more subprocesses to be protected by

replication in subprocessBFT++

- This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor

- Users can also specify a reserve of Scan cycle for their systems to retain

Slack
- Time remaining after a task finishes before the next task or event is scheduled
- Greater usable slack allows for more subprocesses to be protected by

replication in subprocessBFT++

- This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor

- Users can also specify a reserve of Scan cycle for their systems to retain

Slack
- Time remaining after a task finishes before the next task or event is scheduled
- Greater usable slack allows for more subprocesses to be protected by

replication in subprocessBFT++

- This Usable slack comes from the time remaining in the Scan Cycle after
deducting the time allocated to all subprocess on the processor

- Users can also specify a percentage of Scan Cycle for their systems to retain
even after securing it with SubprocessBFT++

OpenPLC and firmware profiling

- We have edited the OpenPLC compilation process to profile the subprocesses
and how much time they take on the MCU in a single cycle

- Allows us to measure in real time the amount of usable slack available in the
system

OpenPLC and firmware profiling

- First column: The sum time allocated to all
subprocesses in a single cycle

- Second column: The total cycle time
* all measurements in microseconds

Slack Calculation
- Lets calculate the slack considering as a user

we want to reserve 25% of the cycle slack

*All calculations in microseconds

*Using averages of the last 500 values when run for 1 minute

Total Slack = (9948) - (7175) = 2773

Reserved Slack = 2773 * 0.25 = 693

Usable Slack = (2773) - (693)

= 2080 micro seconds

Discussion
- The greater the value of the slack with respect to the total time occupied by

subprocesses the more we are able to use the duplication technique which
has a greater level of security

- Replication not possible for all subprocesses as we do not have enough usable
slack

Diversification
- Subprocess identification
- Slack profiling
- Diversification policy generation
- Diversification

Diversification by multicompiler

- Multicompiler is our choice of diversification tool as it works on source code
build by Michael Franz in UCI

- LLVM-based compiler to create artificial software diversity to protect software
from code-reuse attacks.

- However, it works only for x86 targets. We ported it to ARM, a popular
architecture for PLCs

Prototyping with OpenPLC

- Open-source Programmable Logic Controller
development environment

- Widely used in industrial, home automation, and
Internet of Things.

- Can produce PLC programs for a wide range of
hardware, from Raspberry Pi to cloud servers

- Very practical for automating legacy systems
since it can run on a range of hardware, and
does not require great processing power

Prototyping with OpenPLC
- Our decision algorithm runs when OpenPLC

compiles the firmware and decides which part of
the system is protected by which methodology

- The OpenPLC compilation workflow is also edited
to allow for compilation using multicompiler

- Our experiments used the Arduino
NanoRP2040Connect

SubprocessBFT++ Workflow

Potential of SubprocessBFT++

● Significantly widen the applicability of BFT++ and provide resilience against direct cyber-attack
● Providing cyber attack resilience for application which cannot afford device redundancy, alleviate the

need for redundant device in SubprocessBFT++
● Provide a degree of user control over the security to cost ratio
● Layered defence Automated isolation of offending data, which can be communicated to other system

components, e.g. SCATOPSY, RAM2., to prevent repeat attack.
● Integration into OpenPLC design environment for ease of deployment and dissemination.
● Discussion with Siemens for potential integration of SubprocessBFT++ into with their PLCs for the

purpose of commercialization.

Thank you

QRC++

C1

C2

C3
In
pu
t

O
ut
pu
t

Primary

Backup

D
el

ay
 F

IF
O

 (D
)

C0
- Practically the same thing as

BFT++

- Only difference being instead of
3 it has a total of 4 redundant
copies

