
RISC-V Program Execution Monitoring & Control (PEMon)
J. S. Mertoguno, Georgia Institute of Technology

Monitoring at Instruction Level Granularity enable real-time detection and prevention of exploits as they
progress, often before they can achieve foothold and compromise the system. Without hardware support software
will have to execute the software under analysis (SUA) in either emulator (with or without dynamic binary
instrumentation) or debugger, which is not practical for deployed/production software/applications. Software-
based monitoring generally operates at higher level granularity, and often loses the opportunity to stop exploits
on their track. Memory forensic is often required for analyzing and discovering the root cause and entry point of
exploits, postmortem.

General purpose real-time (on the fly) SUA’s instruction level monitoring can be constructed by having a
monitoring processor core to watch over another (the monitored) processor core, with a dedicated circuit
forwarding the monitored processor’s instruction streams into a buffer for the monitoring processor to evaluate.
For each monitored processor instruction, monitoring processor needs an order of magnitude more instructions
for reading/checking validity, masking, comparing with a value (may have to load value to register) and based on
the comparison result, perform some action. Hence the monitoring processors need to be an order of magnitude
faster or more powerful than the monitored processor to keep pace. This is obviously not an ideal solution.

Real-time instruction level monitoring can be practical with hardware supports. Cognizant engine [4] presents a
powerful instruction level program execution monitoring, capable of recognizing any sequence of instructions
(& their address) patterns and data (& their address) access patterns. Given control over the monitored processor
resources, cognizant engine, when necessary, can steer program beyond software and malware intended path,
and can be used to prevent or stop and recover from exploit in progress.

Application specific monitoring accelerator, such as Cognizant Engine[4], raised the programming abstraction
and uses programmable higher abstraction (co-) processor to perform initial (first level) monitoring to keep pace
with the monitored processor, and generate stream of events of interest at much lower frequency for further
processing. A relatively weaker processor (or micro-controller) than the monitored processor can be used for the
later stage where less frequent but potentially more complex processing is often required. Alternatively, a custom
processing logic, the programmable monitor, being used to perform said later stage processing.

GaTech proposes to develop PEMon, in the spirit of Cognizant engine[4],
targeted toward securing CPS application. PEMon will be capable of
monitoring several data and instruction patterns simultaneously. We propose to
instantiate two different RISC-V cores, the higher performance, superscalar
BOOM architecture [6] as the monitored core (slave) and the simple single
issue Rocket architecture [5] as the monitoring core (master), with
programmable state machine performing the initial filtering and event
detection, enabling Rocket to monitor and control the more powerful BOOM.
GaTech will designs PEMon to showcase a new capability for program execution monitoring at instruction level
granularity, without impacting the performance of the monitored processor. PEMon opens a new opportunity for
detecting and mitigating low-level events and attacks that are either too expensive and/or too faint for software
to monitor and detect.

Hardware assisted cyber-security monitoring and protection, such as PEMon, is practical for embedded
controllers applications. Models and deterministic behavior expectations are often existed in CPS. There is also
strict latency requirements preventing the use of heavy software protection techniques in this area. Expected
behaviors can be used as reference model for enforcing by monitoring sequence of state invariants. Beyond the
cyber physical systems (CPS) specific cyber protections above, general cyber security protections, such as
control flow integrity (CPI) enforcement can also be efficiently and practically implemented using PEMon,
within embedded controller operational environment. PEMon provides defense against control flow hijacking
and firmware corruption and malicious reprogramming.

References:
1. C. Yagemann, M. A. Noureddine, W. U. Hassan, S. Chung, A. Bates, and W. Lee, “Validating the

integrity of audit logs against execution repartitioning attacks,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’21

2. C. Yagemann, M. Pruett, S. P. Chung, K. Bittick, B. Saltaformaggio, and W. Lee, “ARCUS: Symbolic
root cause analysis of exploits in production systems,” in 30th USENIX Security Symposium (USENIX
Security 21), USENIX Association, Aug. 2021, pp. 1989–2006

3. C. Yagemann, S. P. Chung, B. Saltaformaggio, and W. Lee, “Automated bug hunting with data-driven
symbolic root cause analysis,” ser. CCS ’21, Virtual Event, Republic of Korea: Association for
Computing Machinery, 2021

4. Sukarno Mertoguno, “Cognizant engines: Systems and methods for enabling program observability and
controlability at instruction level granularity”, 2008.
https://www.freepatentsonline.com/y2010/0107252.html.

5. Rocket Chip Generator
https://bar.eecs.berkeley.edu/projects/rocket_chip.html

6. Welcome to RISCV-BOOM’s documentation
https://docs.boom-core.org/en/latest/

7. Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee, “Bunshin: Compositing Security Mechanisms through
Diversification”, 2017, arXiv preprint arXiv:1705.09165

8. J.G. Rivera, A.A. Danylyszyn, C.B. Weinstock, L.R. Sha, M.J. Gagliardi, “An Architectural Description
of the Simplex Architecture”, CMU/SEI-96-TR-006,
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12521

https://www.freepatentsonline.com/y2010/0107252.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=12521
https://docs.boom-core.org/en/latest/
https://bar.eecs.berkeley.edu/projects/rocket_chip.html

