

PANEL B: ATTACK DETECTION AND MITIGATION


Adam Hahn MITRE

Principal Critical Infrastructure Security Engineer

@ The MITRE Corporation

MODERATOR @ PANEL B

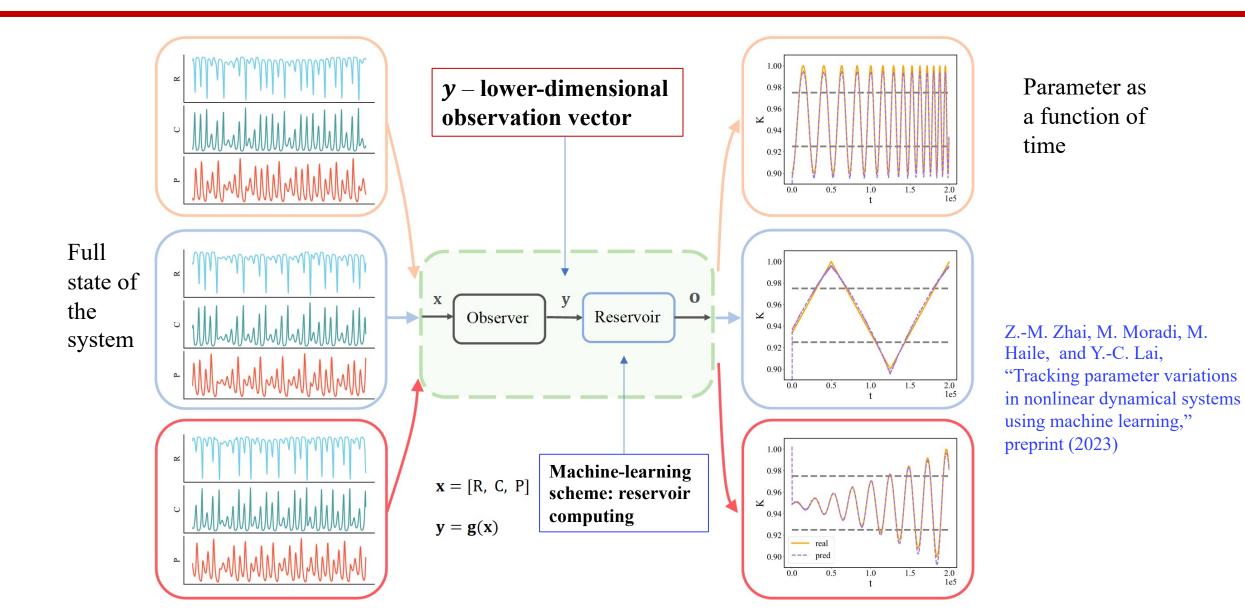
OT Solutions

John Geiger Senior Sales Director RAD Data Communications SLA

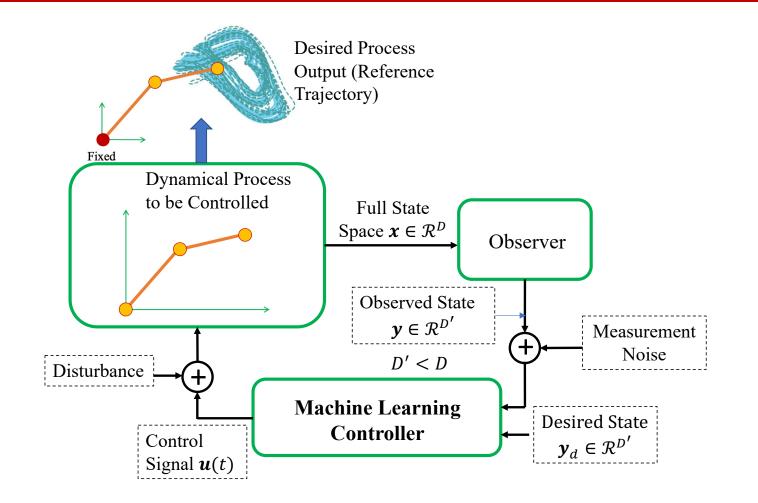
Michael Hylton Senior Sales Director of Cybersecurity SIGASec Mayank Malik r Information Systems Spec ions SLAC National Accelerator Laboratory SIGA

Harry Thomas OT Security Advisor OTORIO

SLAC NATIONAL ACCELERATOR LABORATORY

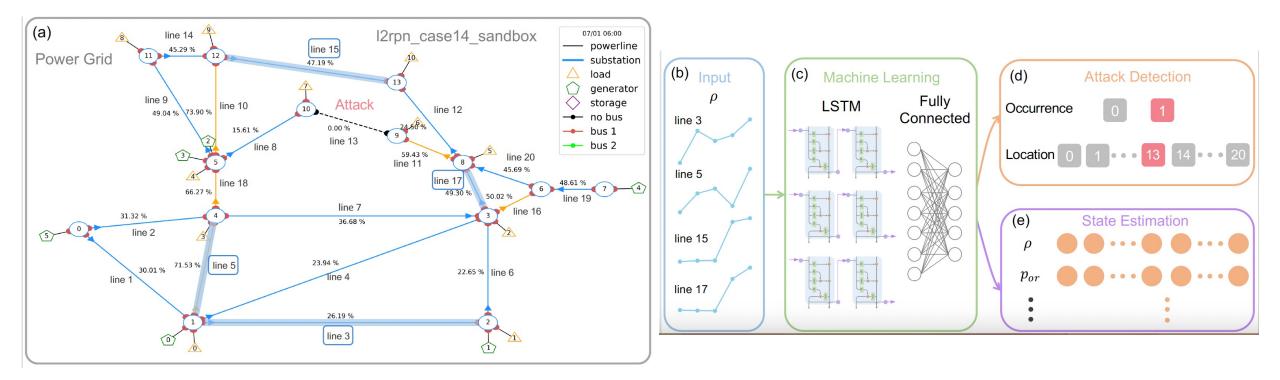

ASU

Sherry Jacob Senior Manager Accenture


Partial State Observation for Parameter Tracking

Partial State Observation for Tracking Complex Dynamical Trajectories

Unique features:


- Model-free
- Requiring only **partial observables**
- Stochastic signal for training
- Time-delayed input configuration for training

Z.-M. Zhai, M. Moradi, L.-W. Kong, B. Glaz, M. Haile, and Y.-C. Lai, "Model-free tracking control of complex dynamical trajectories with machine learning," *Nature Communications* 14, 5698, 1-11 (2023). Highlighted as a Featured Article by Editors.

Partial State Observation for Attack Detection

• Investigate the practical issue of partial state observation by developing an LSTM (long short-term memory) based framework for attack detection and full state estimation. Commercialization will be explored.

Ongoing collaborative work

Secure Utility Networks

John Geiger

October 10, 2023

Your Network's Edge®

Critical Infrastructure

- Critical Infrastructure assets are often very long-lived and reflect massive investments in operational, reliability, and safety testing.
- Most of the legacy protocols common in Critical Infrastructure predate the internet and need for cyber security. This includes the US power grid.
- It's often not economically nor technically feasible to replace existing equipment and applications wholesale with newer alternatives in the short- or medium-term.
- Therefore, such equipment is at greater risk of attacks than equipment with the latest versions of security features and the latest security updates applied, deeply affecting security.
- IPD / IDS or other security application that can activate AI to detect attacks is required to protect Critical Infrastructure.

Security Level/ Participating QQ Security A Function (O) Typical Devices 0 Features Parties Web Servers Public Zone Level 5 - Internet External Remote monitoring 3rd Party Service providers /Cloud Level Communication Device software updates . OEM/vendors **Email Servers** Cloud servers DMZ - Web Servers, Email Servers, Remote Access Server nterprise Zone Risk Assessment IT Manager Level 4 - Business/ **Internal Business** Enterprise Domain Web Business Security Awareness Business strategy **Enterprise Level** Controllers Servers Servers Desktops Communication Security Training I • Planning OT Manager Access Control Policies DMZ - Historian, Backup Director, Patch Server, Remote Access/Jump Server SCADA Management and Review CypherPlug Private, perations Operator Database Domain Operations & Maintenance Utility IDS/IPS Zone Level 3 - Control Internal Operational Workstations Controller Servers Cloud EMS Support Network Monitoring **Center Level** Communication Remote Employees SCADA/Application Servers devices I/O Servers OT and IT Services 0 Encryption Control Vendors SIEM DMZ - Historian, Backup Director, Patch Server, Remote Access/Jump Server CypherPlug Level 2 - Facility RTU / Local Engineering Process Data Conversion, Local Zone HMIs Workstations Level Gateways Control, Asset Monitoring Access Control Policies Device Hardening OT Manager Security Logging Protection IEDs Level 1 - Subsystem Data Acquisition, Telemetry, Eng/Designer Patch Management · Relay Tech Level Process Control Bay Controllers Monitoring Malware Protection · Field Service Tech Data Integrity Protection Physi · IDS/IPS **NCITs Merging Units** Breaker I/O Sensors Level 0 -Physical Process Interface ف Process Level CT/PT Merging Units Indicators **SecFlow Gateway**

Section 10

3

Blockchain for Optimized Security and Energy Management (BLOSEM)

First ever blockchainbased cybersecurity testing environment that features end-toend integration, including generation (inclusive to all sources), transmission, and distribution

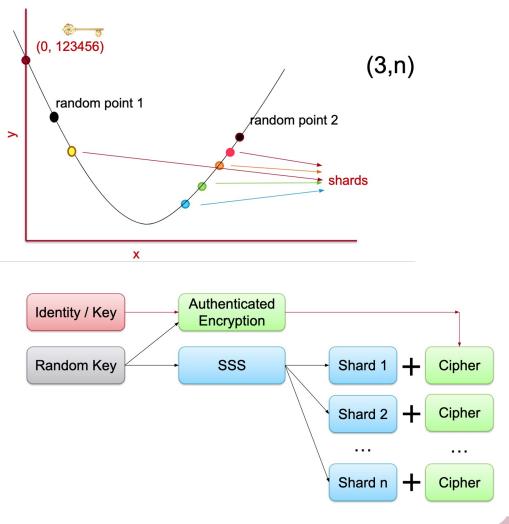
of distribution-level assets to track and provide bulk services (example: influence on market structure or contracts, etc)

Novel, systems-based approach to evaluating blockchain-based applications by creating **tangible metrics and guidance** for performance benchmarks Filling the R&D gap that the industry working groups need to push standards forward.
Also, minimizes risk of fragmented DOE funding

Creation of a longstanding, foundational **reference architecture for grid cybersecurity** illustrating how blockchain can be used in a meaningful way

िर्फ ट्रेन्ट्री

SLAC developed technology to ensure grid assets are protected from supply chain attacks and compromised devices are flagged prior to installation at the operator.



Secure ID: Distributed Identity Management for Grid Assets

The main idea behind the Secure ID is to break a key into multiple shards. Each shard may be distributed to a node on a trusted network such that they abide by the following constraints:

- Only *k* shards are required perform social verification of the secret key, *k* < *n* where *n* is the total number of shards distributed to custodians
- 2. Any shard **S***x* must <u>not</u> be a subset of the key
- 3. All shards S1, S2, ..., Sn when combined together must not reveal the secret key

SLAC

Question 1: What is more helpful?

Supervised or unsupervised machine learning?

Question 1:

What is more helpful? Supervised or unsupervised machine learning?

Question 2:

How do you balance the emerging digital transformation in ICS vs. the need to minimize attack surface of critical infrastructure?

Question 3:

What are the available monitoring strategies for detecting attacks on the physical machines and process layer?



Question 4:

What approach do you propose for legacy environments where digital transformation is a real challenge?

Question 5:

How do you detect attacks that are targeted to the assets themselves using methods like HMI spoofing?

Question 6:

How could AI help detect and mitigate cyber vulnerabilities?

Question 7:

How emerging sensing technologies can be leveraged to protect the power system against cyber threats?

Question 8:

What is your approach or how do you consider the risks for ICS?

Question 9:

Which are among the following approaches preferable? Proactive or Reactive approach in OT security?

Question 10:

How can we use security plugables for attack detection and mitigation?

Question 11: What kind of anomalies are the hardest to detect?

Question 12:

How do the advanced language models and chatbots affect ICS attack detection?