Sequential Pattern-based Anomaly Detection for Enhanced Interpretability

Omer Idgar, Prof. Robert Moskovitch Software and Information Systems Engineering, BGU, IL Ichan Medical School, Mount Sinai, NYC, USA

אוניברסיטת בן-גוריון בנגב Ben-Gurion University of the Negev جامعة بن غوريون في النقب

Robert Moskovitch, PhD

- **Post Doctoral**, Biomedical Informatics Columbia University, NYC
- Head, Complex Data Analytics Lab Software and Information Systems Engineering Ben Gurion University, Beer Sheva, Israel
- Adjunct Faculty, Ichan Medical School at Mount Sinai, NYC
- Vice President, International Artificial Intelligence in Medicine (AIME) Society
- Academic Professional Roles:
 - Academic Editor, PLOS ONE
 - Editorial Board member, Journal of Biomedical Informatics
 - S/PC member: ACM KDD, IJCAI, AAAI, UAI, AIME and more
 - Co-chair, AIME 2020
- Triathlete in the mornings ..

- Funding: IBM, Amdocs, PCS, MoST, PMO Cyber Center, MAFAAT and more.
- Collaborations: Columbia University, Maccabi Healthcare Services, AIIMS/IIT New Delhi, Peking University, UTHealth, UPenn/CHOP and more
- Professional Activities (Organizer/SPC/PC): PLOS ONE Editor, ACM KDD PC, IJCAI SPC, Editorial Board of Journal of Biomedical Informatics. AIME 2020 – Co-Chair.
- Students: Roni Mateless, Nofar Sarafian, Guy Danieli, Stav Sapir, Tal Ivshin, Maya Schvatz, Pavel Novitzki, Omer Harel, Amos Zamir, Noa Lemberger, Nevo Itzhak, Ofir Dvir, Guy Shitrit.

Funders and Collaborators

Temporal Raw Data

From Time Points to Time Intervals Series

Robert Moskovitch, Yuval Shahar, Classification Driven Temporal Discretization of Multivariate Time Series, *Data Mining and Knowledge Discovery*, 29, 4, 871-913, 2015.

Motivation

- Industrial Control Systems (ICS) are essential networks of hardware and software that manage industrial processes, such as water purification plants.
- Increased internet connectivity exposes ICS to cyber threats, highlighting the need for robust security measures and advanced anomaly detection techniques.

Anomaly Detection

Anomaly detection is a field of study that focuses on identifying unusual or abnormal behavior in data.

- Statistical methods
- Machine learning algorithms
- Data mining techniques
- Rule-based methods

Research Goals

Objective 1: Develop an anomaly detection model using **sequential patterns**. **Objective 2**: Develop an **interpretable** algorithm for cyber security experts in ICS.

Pros of Temporal Abstraction

- Handle missing values robust to gaps in data.
- Handle irregular sampling unifies inconsistent data collection intervals.
- Generalization detects patterns across varying time intervals.
- Interpretability offer clearer interpretation than continuous data.

HA1c.High	 	+		
Insulin.High			 _	
Glucose.Norm	 -			
Cholesterol.Low				
statines.Low				
Patient 8				_
HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 9	 		 	
HA1c High				
Insulin.High				
Glucose.Norm	 		 	
Cholesterol.Low			 	
statines.Low	 		 	
Patient 10				_
			10	

Sequential Pattern Mining

- Database consists of ordered events, in which each event is 1 time-unit long.
- <u>Apriori property</u>: If a sequence is infrequent, then all its super-sequences must also be infrequent.

Example: < e a > is infrequent, then < e a b > must be infrequent as well.

10	< b a d c >
20	< (bd) a (de) c b >
30	< a d c b >
40	< a d (be) c >
50	< c d b c a b >

Sequential Pattern Mining - Example

Sequential Pattern Mining

Real example of pattern:

"Water tank fills, then empties"

<u>3 sensors</u>: **inflow pump** - in, **water level** - level, **outflow pump** – out <u>Abstractions Levels</u>: **High** – **H**, **Low** - **L**

< (in_H, level_L, out_L) (in_H, level_H, out_L) (in_L, level_H, out_H) >

"Tank Filling Up"

"Tank Full"

"Tank Draining Down"

Sequential Pattern - definitions

Horizontal Support (HS)

HS of a pattern P in sequence S – The number of times pattern P is contained in S

SID	Sequences	
10	< b a c >	
20	< (b,d) a (d,e) c b >	HS(< b >, 20) = 2
30	< a d c b >	HS(< a >, 30) = 1
40	< a d (b,e) c >	
50	< c b c a b c >] HS(< c c >, 50) = 3
		<pre>cbcabc> <cbcabc> <cbcabc> <cbcabc></cbcabc></cbcabc></cbcabc></pre>

Sequential Pattern - definitions

Mean Duration (MD)

MD of a pattern P in sequence S – Sum of time spans for each P instance in S, divided by P's

occurrences.

SID	Sequences	
10	< b a c >	
20	< (b,d) a (d,e) c b >	MD(< b >, 20) = $\frac{1+1}{2} = \frac{2}{2} = 1$
30	< a d c b >	
40	< a d (b,e) c >	
50	< c b c a b c >	MD(< c c >, 50) = $\frac{3+4+6}{2} = \frac{13}{2} = 4.33$
		<pre>< c b c a b c > 3 3 3 </pre>

Attack Periods Anomaly Detection Hypothesis Since attacks can be seen as anomalous periods of sensor data, sequential patterns that are considered frequent in mostly normal periods will appear as missing or have different properties

- Motivation
- Background
- Proposed Method

Proposed Method

Raw Time-Series to Sequence database - Tiep

We also introduce and evaluate a more efficient approach for sequence extraction - "Tiep" (Time Interval Endpoint).

- Aims to mitigate scalability issues in high-resolution data.
- Unlike traditional methods, focuses only on starting time points.
- Significantly reducing computational overhead and memory usage.

Full Original Sequence:

< (CDG) (BEG) (BFG)>

Sequential Pattern Mining

- Motivation
- Background
- Proposed Method
- **Evaluation**

Evaluation

Dataset

Secure Water Treatment (SWaT)

- **Source**: iTrust, Singapore University of Technology and Design
- URL: https://itrust.sutd.edu.sg/itrust-labs_datasets/
- **Objective**: Evaluate anomaly detection in industrial control
- Disvisible rimes two parts: (1) Training set and (2) Test set
- Training set: 7 days of normal operation data
- **Test set**: 4 days of data with 36 injected cyber-physical attacks

Timestamp	FIT101	LIT101	AIT201	MV101	P101	P102	AIT202
	2.470294	261.5804	244.3284	2	2	1	8.19008
	2.457163	261.1879	244.3284	2	2	1	8.19008
	2.439548	260.9131	244.3284	2	2	1	8.19008
	2.428338	260.285	244.3284	2	2	1	8.19008
	2.424815	259.8925	244.4245	2	2	1	8.19008
	2.425456	260.0495	244.5847	2	2	1	8.19008
	2.472857	260.2065	244.5847	2	2	1	8.19008
	2.513532	260.5991	244.5847	2	2	1	8.19008
	2.559972	261.0309	244.5847	2	2	1	8.19008
	2.598085	261.1093	244.809	2	2	1	8.19008
	2.630753	261.7766	244.809	2	2	1	8.19008
	2.649329	261.7766	244.809	2	2	1	8.19008
	2.654133	261.8944	244.8731	2	2	1	8.19008
	2.646446	261.6589	244.8731	2	2	1	8.19008
	2.625949	261.2664	245.0333	2	2	1	8.19008
	2.61602	260.8346	245.0333	2	2	1	8.19008
	2.609935	261.0309	245.0333	2	2	1	8.19008
	2.602889	261.1093	245.0333	2	2	1	8.19008
	2.587516	260.9916	245.0333	2	2	1	8.19008
	2.573103	261.3056	245.0333	2	2	1	8.19008
	2.556769	261.6589	245.4499	2	2	1	8.19008

Research Questions

- 1. Which **number of bins** has the best performance in abstracting our data?
- 2. Which **metric** has the most effective performance between frequent patterns and transactions, such as Binary, Horizontal Support, and Mean Duration?
- 3. Which state-of-the-art **anomaly detector**, including OneClassSVM and SGDOneClassSVM, achieves optimal generalization on our data and has the best performance when utilizing them?

Research Questions

- What are the best framework parameters?
 - What discretization method and which number of bins results best?
 - Which pattern metric works best for anomaly detection purposes?
 - What window sizes and pattern support thresholds balance mining complexity with detection accuracy?
 - How does using **negative patterns** impact detection accuracy and interpretability?
- How does the approach compare with statistical, shallow learning, and deep learning baselines?
- Can the technique accurately diagnose anomaly causes by mapping deviations to contributing patterns and sensors?

- Motivation
- Background
- Proposed Method
- Evaluation
- Initial Results

Initial Results

Key Results

Number Of Frequent Patterns

Overall Results

	SWaT		* P-Preci	* P-Precision, R-Recall		
Method	P* R*		AUC	F1		
MERLIN	0.656	0.2547	0.6175	0.3669		
LSTM-NDT	0.7778	0.5109	0.714	0.6167		
DAGMM	0.9933	0.6879	0.8436	0.8128		
OmniAnomaly	0.9782	0.6957	0.8467	0.8131		
MAD-GAN	0.9593	0.6957	0.8463	0.8065		
USAD	0.9977	0.6879	0.846	0.8143		
MTAD-GAT	0.9718	0.6957	0.8464	0.8109		
CAE-M	0.9697	0.6957	0.8464	0.8101		
GDN	0.9591	0.6957	0.8462	0.8101		
GRN-50	0.9972	0.5921	0.8781	0.7389		
GRN-100	0.9986	0.5909	0.8845	0.7496		
Our best algorithm:	0.998	0.583	0.8646	0.736		

Main Problems

Problem: AUCs with values lower than 0.5

- Indicates poor novelty detection performance
- Suggests issues in the model or algorithm

Investigation and Identified Problem

- Algorithm choice: OneClassSVM
- Potential causes: Overfitting and poor generalization

Solution: Switch to SGDOneClassSVM

- Better performance on large datasets
- Less prone to overfitting
- Improved generalization and higher AUC scores

- Motivation
- ✔ Background
- Proposed Method
- Evaluation
- Initial Results
- Future Research Directions

Future Research Directions

More datasets Evaluation with TIEPs Explainability Using TIRPs Using TIRPs with Similarity

From Time Points to Time Intervals Series

Robert Moskovitch, Yuval Shahar, Classification Driven Temporal Discretization of Multivariate Time Series, *Data Mining and Knowledge Discovery*, 29, 4, 871-913, 2015.
Time Intervals Related Patterns Discovery

HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 8	 	
HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 9	 	
HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 10	 	

Time Intervals Related Patterns Discovery

HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 8	 	 	
HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 9	 	 	
HA1c.High Insulin.High Glucose.Norm Cholesterol.Low statines.Low Patient 10	 	 	

Allen's (1983) Temporal Logic

Time Intervals Related Pattern - TIRP

A TIRP is a conjunction of pairwise temporal relations

{A o B, A < C, As < D, A < E, B m C, B < D, B < E, C c D, C o E, D m E}

A k-sized TIRP includes $k(k-1)/2 = (k^2-k)/2$ temporal relations

TIRPs have several metrics, which can be predictive

- Vertical Support how many patients have the TIRP in the database
- Horizontal Support how many instances (episodes) of the TIRP were in the past hours (or weeks)
- Mean Duration what is the average duration of these instances

Time Intervals Related Patterns Discovery – an illustration

KarmaLego Fast Time Intervals Mining

Moskovitch et al, Outcomes Prediction via Time Intervals Related Patterns, IEEE International Conference on Data Mining (ICDM), 2015

KarmaLego General Workflow

Moskovitch et al, Fast Time Intervals Mining by Exploiting the Transitivity of Temporal Relations, Knowledge and Information Systems, 2015.

Use of TIRPs from KarmaLego

KarmaLegoV

Visual KarmaLego -	MainIndex.karn	nac																	7 🔀
File Tools																			
Current Path	Root >> HBA	1 <u>C.Inc</u> >>																	
Informati		UP																	
Measure	Value	RELS	SYMB		VS	LHS	GHS	-	RELS	SYMB	VS	- LHS	GHS		Property :	gender	•		
TIV	0.098	Before	Diabetes.	Dec	489	1.19	0.29		Before	HBA1C.Dec	137	1.04	0.07			ge	ender		
Vert support	221	Meets	Diabetes.	Dec	260	1.07	0.14		Before	HBA1C.Stab	103	1.01	0.05				_		.
Local Horz support	1.054	Overlaps	Diabetes.	Inc	285	1.05	0.15								Male 124				_
Global Horz support	0.114	Contains	Diabetes.	Inc	569	1.46	0.41	_								(
Maximum depth	2	Meets	Diabetes.	Inc	276	1.07	0.14												
Level	2	Before	Diabetes.	Inc	504	1.18	0.29									-			
# Instances	233	Finishes By	Diabetes.	Inc	221	1.05	0.11										A	Female (109 (45.70%)	
# Next Level	2	Starts	Diabetes.	Low	319	1	0.16												
		Before	Diabetes.	Low	132	1.11	0.07	×						_					
6 ID I	.abel									and the second second	2.5		Avera	ige Patti	em				
43 F 43 H	HBA1C.Inc							-	HBA1CUIC Finishes B	Diaboles.inc	⊒	. ,		•					
6 [Diabetes.Inc							ł											1
-		mstances	11 SL					State											1
Entity ID Interv	als		id	gender	sing	le/marries	- 1	ļ							-				
205			205	Male	Mar	ried											_ <u>.</u>		
212 -	-		212	Male	Sing	le		50		10		X	J	Time	30		40		50
212			212	Male	Sing	le .								- 12					-
221			221 1	emale	Man	ried			6 S. S		8	9 - S		21	8. 18. A B	- 10 - 10		8 S S	- X .
221			221 1	remale	Ivian	ried				4192	<u>x</u> - 20		15 - 21	÷				<u></u>	
240	2		240	viale	Sing	ie Jacia		-	-	N 3					4		<u>a</u> - 5	8 8 S	- X
260			200	viale	Jylan	ried							11 14	-					
209	100000		209	viale	Jytan	ried		1000					_		_				⁻ x
200			200 .	viale	Man	neo 									-				
271			291 1	ernale Toropio	Sina	nea Ia		-	-										ĪV
210	10000		210	Toroale	Sing	le.	~	1											· ^,
< <u> </u>			10	ennale	100	n	>												_
衝 🤌 📃	🖉 🐼 💭 🔘	> 🛠 😒		1	3 - 🍞	н. 🔜	1.					🔶 🛛 n Des	ktop		Q		🧝 🖹 🗎 🐌 🗴	s 👬 🕥 🌗	06:00

KarmaLegoV

KarmaLegoV – Search Results

🖳 Search	🚇 Search for Patterns - D:\Phd_bkp\KarmaLego\KarmaLegoD\Diabetes\LegoF[Diabetes_FullyGrouped_KB3EWDF1]_mxg3e0ms5_mxTirp20\LegoF[Diabetes_FullyGrouped_KB3EWDF1]_mxg3e0ms5_mxTirp20-index.kin 👝 🔂 🔀										
Starts v	vith : 🖌 🔀	🧹 Contains	: 🖉 📐 🗸	Ends with :							
ID	Property	A ID	Property 🔦	ID Propert	y 🔺	🔲 Limit H Supp	port		Average Pattern		24 AV
42	HBA1C.Stab	1 1	Diabetes.Low	📕 39 HBA1C	Lev3	From 0	To 0	HBATCI HBATCI	ter Equate Nation Equate Circlestered Static Equate Circlestered Static Equate Circlestered Static Equate		Search
V 43	HBA1C.Inc	2 1	Diabetes.Med	📃 40 HBA1C	Lev4			I			
44	LDL.Lev1	4 [Diabetes.Dec	📝 41 HBA1C	Dec		port				.CI0.86
45	LDL.Lev2	5	Diabetes.Stab	42 HBA1C	Stab	From 0	To 0	a a a a a a a a a a a a a a a a a a a			
6	LDL.lev3	6 1	Diabetes.Inc	🔲 43 HBA1C	Inc					Se Se	lect Index
47	LDL.Lev4	🗖 7 I	BetaBlockers.Low	🔲 44 LDL.Le	v1	From 0	То				
E 48	LDL.Dec	📃 10 H	BetaBlockers.Dec	🔄 45 LDL.Le	v2			2	5 30 35 40 45	50 5	ive Results
		· · · · ·			-			<u>×</u>	1005		
Level	Property #1	Property #2	Property #3	Property #4	Property #5	Property #6	Property #7	Property #8	Relations	H Support	V Supp *
6	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Cholesterol.Stab	Glucose.Stab	HBA1C.Dec			e.b.b.b.b.e.b.b.e.e.b.b.b.b.b.	148	0.07
7	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Cholesterol.Stab	Glucose.Stab	Creatinine.Stab	HBA1C.Dec		e.b.b.b.b.e.b.b.e.e.b.b.e.e.e.b.b.b.b.b	118	0.06
6	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Cholesterol.Stab	Creatinine.Stab	HBA1C.Dec			e.b.b.b.b.e.b.b.e.e.b.b.b.b.b.	131	0.06
5	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Glucose.Stab	HBA1C.Dec				e.b.b.b.b.e.b.b.b.b.	159	0.08
6	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Glucose.Stab	Creatinine.Stab	HBA1C.Dec			e.b.b.b.b.e.b.b.e.e.b.b.b.b.b.	122	0.06
5	HBA1C.Inc	Cholesterol.Inc	HBA1C.Stab	Creatinine.Stab	HBA1C.Dec				e.b.b.b.b.e.b.b.b.b.	138	0.07
4	HBA1C.Inc	Cholesterol.Inc	LDL.Stab	HBA1C.Dec					e.b.b.b.b.b.	133	0.06
5	HBA1C.Inc	Cholesterol.Inc	LDL.Stab	Cholesterol.Stab	HBA1C.Dec				e.b.b.b.b.e.b.b.b.b.	120	0.06
4	HBA1C.Inc	Cholesterol.Inc	Glucose.Stab	HBA1C.Dec					e.b.b.b.b.b.	173	0.08
5	HBA1C.Inc	Cholesterol.Inc	Glucose.Stab	Creatinine.Stab	HBA1C.Dec				e.b.b.b.b.e.b.b.b.b.	130	0.06
4	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	HBA1C.Dec					e.e.e.b.b.b.	147	0.07
6	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	HBA1C.Stab	Cholesterol.Stab	HBA1C.Dec			e.e.e.b.b.b.b.b.e.b.b.b.b.b.	122	0.06
7	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	HBA1C,Stab	Cholesterol.Stab	Glucose.Stab	HBA1C.Dec		e.e.e.b.b.b.b.b.b.e.b.b.b.e.e.b.b.b.b.b	106	0.05
6	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	HBA1C.Stab	Glucose.Stab	HBA1C.Dec			e.e.e.b.b.b.b.b.b.e.b.b.b.b.b.	113	0.05
5	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	Cholesterol.Stab	HBA1C.Dec				e.e.e.b.b.b.b.b.b.	131	0.06
6	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	Cholesterol.Stab	Glucose.Stab	HBA1C.Dec			e.e.e.b.b.b.b.b.b.e.b.b.b.b.b.	111	0.05
5	HBA1C.Inc	Cholesterol.Inc	Glucose.Inc	Creatinine.Stab	HBA1C.Dec				e.e.e.b.b.b.b.b.b.	104	0.05
4	HBA1C.Inc	Cholesterol.Inc	Creatinine.Stab	HBA1C.Dec					e.b.b.b.b.b.	163	0.08
3	HBA1C.Inc	Glucose.Dec	HBA1C.Dec						b.b.s.	248	0.11
3	HBA1C.Inc	Glucose.Dec	HBA1C.Dec						F.b.b.	106	0.05 👻
-											•
121 Fot	ind, 1 Selected										
- 📀 -	6 🖬 🕑 📮	💷 😔 🖈 🖸 😳	🙋 🕨 🖉	2 Firefox	+ 🚺 2 Windov	v 👻 📬 MRD-2	79_K 🔛 Visua	al Karma 🛛 🔜 Se	earch for P 📃 📧 < 🚅 🖉 🖉 🔊 🐌 🕵 ,	á 🕫 🕲 🔂 🕷	17:20

Visualization of Predictive TIRPs in Two Populations

a. Population 1 TIRPs Tree

b. Population 2 TIRPs Tree

Visualization of Predictive TIRPs in Two Populations

c. The Populations Unified TIRPs Tree

Visualization of Predictive TIRPs in Two Populations

Guy Shitrit, Noam Tractinsky, Robert Moskovitch, Visualization of Frequent Temporal Patterns in Single or Two Populations, *Journal of Biomedical Informatics*, 2022.

Continuous event's prediction via TIRPs

Detected TIRPs Instances

Itzhak et al, Continuous Prediction of Temporal Pattern Completion, PAKDD 2023

Next Directions with TIRPs Similarity

- The idea is to develop a similarity function for a TIRP, based on their time intervals duration, and temporal relations
- Use that for Anomaly Detection
- Use that for COPE identification

Time Intervals Related Pattern - TIRP

A TIRP is a conjunction of pairwise temporal relations

{A o B, A < C, As < D, A < E, B m C, B < D, B < E, C c D, C o E, D m E}

A k-sized TIRP includes $k(k-1)/2 = (k^2-k)/2$ temporal relations

TIRPs have several metrics, which can be predictive

- Vertical Support how many patients have the TIRP in the database
- Horizontal Support how many instances (episodes) of the TIRP were in the past hours (or weeks)
- Mean Duration what is the average duration of these instances

Using Similarity for Anaomaly Detection, or COPE ideantification

- Using the similarity function for Anomaly Detection
 - How the patterns in the data are similar or anomaluous?
 - Not similar -> anomalous, and how? Using a threshold
 - Include explainability which patterns, and how different?
- Using the similarity function for COPE Identification
 - After having a TIRP that idenitifies a COPE (system situation)
 - How similar is it?
 - Or how different than common appearance
 - – will give much more granular detection framework

KarmaLegoSification

- A major problem in multivariate time series classification is the various types of raw temporal data
- TIRPs can be useful here as well, as classification features

Moskovitch et al., Data Mining and Knowledge Discovery, 2015

Unsupervised Discretization: EWD and SAX

EWD the continuous values range is divided into k equal bins (states)

Symbolic Aggregate approXimation
 Based on PAA, Piecewise Aggregate
 Approximation, A time series segmenting
 algorithm (Keogh et al., 2003).

TD4C - Temporal Discretization for Classification

TD4C Formulation

- Given $C = \{c_1, c_2, ..., c_n\}$ classes, E entities divided into $\{E_1, E_2, ..., E_c\}$ sets of entities per class and $T = \{t_1, t_2, ..., t_m\}$ temporal variables, and A a TD4C abstraction method.
- The problem is to find the set of cutoffs for each temporal variable t_i that increases the difference in the dominant states in each class.
- Thus, we want to measure the distribution of the states in each class entities, and to measure when these are most different.
- $\hfill\square$ For that three measure were determined:
 - Entropy • Cosinus • Kullback-Leibler • E(c) = $-\sum_{i=1}^{k} p_i \cdot \log(p_i)$ $D = \sum_{i=1}^{c} \sum_{j=i+1}^{c} |E(c_i) - E(c_j)|$ $D = \sum_{i=1}^{c} \sum_{j=1}^{c} similarity(c_i, c_j)$ $D = \sum_{i=1}^{c} \sum_{j=1}^{c} similarity(c_i, c_j)$ $D = \sum_{i=1}^{c} \sum_{j=i+1}^{c} KL(c_i, c_j)$

Generalization of Allen's Temporal Relations

KarmaLegoS enables to mine TIRPs with 7 (Allen's original) or 3 more general temporal relations

Class	Tirp _n			Tirp ₄	Tirp ₃	Tirp ₂	Tirp ₁	entity
0	0	Ø	0	1.2	3.4	2.3	0	P ₁
1	3 .3	1 .23	2 .54	3.56	1 .23	0	0	P ₂
0	0	0	7	3 .34	2 .56	0	0	P ₃
0	0	0	0	2 .7	1 .45	3 .34	1 .6	P ₄
1	2 .4	0	0	0	0	2 .34	2.2	P _§
1	1 .34	0	0	1 .56	0	2 .5	1 .2	P ₆
1	0	0	0	2 .23	0	0	1.8	P _m

Datasets

- ICU Dataset 645 patients who underwent cardiac surgery at the AMC in Amsterdam (2002-2004). Includes over 12 hours of *High* and *Low frequency*. 196 patients were mechanically ventilated for more than 24 hours (70%), and the rest were 449.
- Diabetes- Contains 2038 diabetic patients data along 5 years (2002-2007) from Israeli HMO, measured monthly HbA1c, Glucose, Cholesterol values and medication purchased.
 992 males and 1012 females, having a quite balanced (~50%) dataset.
- Hepatitis Laboratory measurements of Hepatitis B and C patients, admitted in Japan. Eleven temporal variables, having the top vertical support.
 204 Hepatitis B patients and 294 Hepatitis C patients (~60%).

KarmaLegoS Evaluation Setup

KarmaLegoS - Parameters

- To evaluate KarmaLegoS 5 experiments were designed for the various parameters in the KarmaLegoS framework, including:
 - Abstraction method (KB, EWD, SAX, TD4Cs)
 - Number of bins (3, 4)
 - Temporal relations set (3, 7)
 - TIRP Representation (Binary, HS, MeanD)
- For that experiments we designed and ran on three real datasets using 10 fold cross validation and RandomForest, compared according to the Accuracy measure.

Temporal Relations and TIRP representation

Abstraction Methods vs Bins Number

ε=0, 3 temporal relations, MeanD and NoFS

Experiment 4 – Temporal Separability

- TD4C is a good measure to the separability potential of a temporal variable, given a class.
- Using the most separable temporal variables will increase the final accuracy?
- To answer that:
 - The TD4C scores for each variable are presented
 - The classification results with the top sets of variables are shown
- The experiments were performed with the settings: 3 bins, 3 temporal relations, ε = 0, no feature selection and Random Forest, with the TD4C methods

Exp 4 – Results per top TD4C

Diabetes				
PropertyName	Ent	Cos	KL	0.16
Creatinine_FULL	0.87	0.87	0.33	0.69
Cholesterol_FULL	0.37	0.31	0.05	0.24
Albumin_FULL	0.27	0.28	0.03	0.20
BetaBlockers	0.23	0.22	0.02	0.16
Glucose_FULL	0.23	0.20	0.02	0.15
LDL_FULL	0.21	0.18	0.02	0.13
ССВ	0.12	0.09	0.01	0.07
HBA1C_FULL	0.13	0.09	0.01	0.08
Other	0.11	0.10	0.01	0.07
Diabetes	0.10	0.09	0.00	0.07
Statins	0.14	0.09	0.01	0.08
Ace	0.07	0.04	0.00	0.04

ICU12h				
PropertyN	Ent	Cos	KL	0.26
FiO2	0.69	0.54	0.16	0.46
Мреер	0.41	0.49	0.10	0.33
CVD	0.46	0.48	0.08	0.34
BE	0.39	0.31	0.05	0.25
CI	0.37	0.32	0.04	0.24
Glucose	0.47	0.24	0.05	0.25
ABPm	0.31	0.28	0.03	0.21
Hf	0.25	0.22	0.02	0.16
CKMB	0.25	0.20	0.02	0.16
Temp	0.24	0.19	0.02	0.15

Hepatitis_FULL				
PropertyName	Ent	Cos	KL	0.23
ALP	0.64	0.61	0.15	0.47
LDH	0.66	0.61	0.15	0.47
ТР	0.50	0.45	0.08	0.34
ALB	0.34	0.32	0.04	0.23
D-BIL	0.26	0.30	0.03	0.20
GOT	0.22	0.25	0.03	0.17
GPT	0.19	0.19	0.02	0.13
UA	0.22	0.17	0.02	0.13
T-BIL	0.17	0.15	0.01	0.11
I-BIL	0.13	0.05	0.01	0.06

Exp 4 – Accuracy by Top Variables

Continuous event's prediction via TIRPs

Detected TIRPs Instances

Continuous Prediction of TIRP's Completion

At any timepoint (e.g., t_c^1 , t_c^2 , t_c^3 , and t_c^4), we aim to continuously estimate the probability of the TIRP's completion.

Nevo Itzhak, Szymon Jaroszewicz, Robert Moskovitch, Continuously Predicting a Time Intervals Based Pattern Completion Towards Event Prediction, PAKDD, **Osaka, Japan, 2023**.

Segmented CPM (SCPM)

Q – TIRP of interest

 p_{t_c} - denote a prefix representing the observed part of Q at t_c s_{t_c} - denote the remaining part of Q at t_c that is expected to occur.

$$Pr(Q|t_c) = Pr\left(\frac{s_{t_c}|p_{t_c}}{Pr(p_{t_c})}\right) = \frac{Pr\left(p_{t_c}|s_{t_c}\right)Pr\left(s_{t_c}\right)}{Pr(p_{t_c})} = \frac{Pr\left(p_{t_c},s_{t_c}\right)}{Pr(p_{t_c})} = \frac{Pr(Q)}{Pr(p_{t_c})} = \frac{Pr(A \circ B, A < C, B < C)}{Pr(A \circ B)}$$

Segmented CPM (SCPM)

Q – TIRP of interest

- \mathbf{p}_{t_c} denote a prefix representing the observed part of Q at t_c
- \mathbf{s}_{t_c} denote the remaining part of Q at t_c that is expected to occur.

$$Pr(Q|t_{c}) = Pr(\underline{s_{t_{c}}|_{p_{t_{c}}}}) = \frac{Pr(\underline{p_{t_{c}}|_{s_{t_{c}}}})Pr(\underline{s_{t_{c}}})}{Pr(\underline{p_{t_{c}}})} = \frac{Pr(Q)}{Pr(\underline{p_{t_{c}}})} = \frac{Pr(A \circ B, A < C, B < C)}{Pr(\underline{p_{t_{c}}})}.$$

$$Pr(\underline{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})}) = \frac{Pr(\underline{p_{t_{c}}|_{s_{t_{c}}}})Pr(\underline{p_{t_{c}}})}{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})} = \frac{Pr(A \circ B, A < C, B < C)}{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})}.$$

$$Pr(\underline{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})}) = \frac{Pr(\underline{p_{t_{c}}|_{s_{t_{c}}}})Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})}{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})Pr(\underline{p_{t_{c}}})}.$$

$$Pr(\underline{Pr(\underline{p_{t_{c}}})Pr(\underline{p_{$$

Introduction

Background

Objectives
Unfinished Coinciding STIs

Possible evolving temporal relations, given that the start times of a pair of unfinished STIs are known.

Slide 73 out of 25

TIRP-Prefixes Representation

A TIRP of interest is divided into TIRP-prefixes that are part of the TIRP's evolving process

Slide 74 out of 25

Unfinished Coinciding STIs

(i) TIRP-Prefix Schematic Representation

For four unfinished symbolic time intervals, a naive generation of all the suitable temporal relations among them requires generating up to $3^{(4^2-4)/2} = 3^6 = 729$ patterns

Slide 75 out of 25

Introduction

Machine-Learning-based CPM (CPML)

Time durations d1, d2, and d3 are based on tieps A+, B+, A-, and tc, which are used as *features for the classifiers* to perform the TIRP's completion prediction.

Instance	d1	d2	d3	 dk	Class
1	1	2	12	 0	1
2	9	12	1	 0	0
n	1	2	11	 0	1

Early Warning Strategies

An alert could be raised after the probability was consistently exceeded for some pre-defined decision time delay

Evaluation

Research Questions

A. Which CPM performs better, in terms of prediction performance and earliness, in predicting the completion of a TIRP?

B. Which value of τ performs best, in terms of prediction performance and earliness, in predicting the completion of a TIRP?

Evaluation

Datasets

Table 1. The evaluation datasets' parameters

Name	#Ent	#Var	#Timestamps	Granularity	#EntEvent	#TIRPs
CSP	329	13	720	minutes	115~(35%)	257
AHE	1,000	4	238	hours	500~(50%)	246
DBT	1,710	12	24	months	239(14%)	256
EFIF	823	15	144	weeks	121~(15%)	529

We evaluated the proposed models using four real-life datasets:

- 1. CSP dataset ICU patients, who underwent cardiac surgery Event: low cardiac index with values lower than 2.5 L/min/m
- 2. AHE dataset ICU patients from multiple ICUs, in which half of the patients had acute hypertensive episodes *Event: AHE onset*
- 3. DBT dataset Type II diabetes patients Event: high Hemoglobin A1C with values greater than 9%
- 4. EFIF dataset elderly first fall of residents Event: First fall

Results Preliminary Analysis

ANN performed better than the other models.

Results Preliminary Analysis

More accurate models need more time to make decisions. SCPM provided the latest predictions

NB and RF provided the earliest predictions.

Summary

- 1. Continuous TIRP's completion prediction
- 2. Uncertainty related to evolving temporal relations and our solution-- TIRP-prefix representation
- 3. CPML based on an ANN outperformed other models with 1.5% AUROC on average, while CPML based on NB or RF provided early TP predictions.

Thank You!

Prof. Robert Moskovitch Head, Complex Data Analytics Lab Software and Information Systems Engineering Ben Gurion University Israel

robertmo@bgu.ac.il

Relevant References

- Omer Harel, Robert Moskovitch, Complete Closed Time Intervals-Related Patterns Mining, The 35th AAAI Conference on Artificial Intelligence (AAAI 2021), Vancouver, Canada, 2021. Rank A*
- Nevo Itzhak, Szymon Jaroszewicz, Robert Moskovitch, Continuously Predicting a Time Intervals Based Pattern Completion Towards Event Prediction, PAKDD, Osaka, Japan, 2023.
- Nevo Itzhak, Maya Schvetz, Itay Pesach, Robert Moskovitch, Acute Hypertensive Episodes Prediction, *Artificial Intelligence in Medicine*, 2023.
- Maya Shwetz, Lior Fuchs, Victor Novack, Robert Moskovitch, Outcomes Prediction in Longitudinal Data: Study Designs Evaluation, use case in ICU Acquired Sepsis, *Journal of Biomedical Informatics*, 2021.

Sepsis Acquired During ICU Admission

- Patient with suspected infection
 - Identified by administration of antibiotics and sampling of body fluid
- Patient with Sequential Organ Failure Assessment (SOFA) score >= 2
 - □ SOFA determines the extent of a person's organ rate of failure
- ICU-acquired Sepsis is defined as one that started at least 48 hours after admission

Maya Shwetz, Lior Fuchs, Victor Novack, Robert Moskovitch, Outcomes Prediction in Longitudinal Data: Study Designs Evaluation, use case in ICU Acquired Sepsis, *Journal of Biomedical Informatics*, 2021.

	ICU Acquired Sepsis	
		,
t _o Admission First 2 days in ICU Start Time	Time interval of 48 hours, SOFA>=2	

Exp 1- Predict the Occurrence of Sepsis Acquired in ICU Onset a Certain Time in Advance

- Case-Control design relative to the outcome
- **Case-Crossover** design with sliding window approach
- Sliding window (Case-Crossover-Control)

		C	ohort Subject			(
					ICU Acquired	Sepsis		
_	Negative Window 6/12 hours	Negative Window 6/12 hours	Negative Window 6/12 hours	Positive Window 6/12 hours	_			
-								
t _o Admiss Start Ti	ion ime	/	• t _x	-p-o t _x	Prediction Time (1/6 hours)			
	Matched Control							
-			<u> </u>	Negative wind 6/12 hours	ow 			
t _o Admiss	sion		► t,		t _x -p	*		
Start TI	ME							

Representation Methods and Classifiers

Low Performance Possible Reason

Exp 2 - Predict whether a patient will develop sepsis acquired in ICU at his stay

• Case-Control design **relative to prior event**, admission start time, to the outcome

Cohort Subjec	t
	ICU Acquired Sepsis
Positive Observation Window (O ₁)	
t _o t _n Admission Start TIME	t _x
Control Subject	t
Negative Observation Window (O ₀)	
t _o t _n Admission Start TIME	

AUC results per hours from start ICU admission and observation period

Temporal Data Analytics (IoT)

HA1c.High Insulin.High	
Glucose.Norm	
Cholesterol.Low	
statines.Low	
Patient 8	
HA1a High	
Inculin High	
Glucose Norm	
Cholesterol I ow	
statines.Low	
Patient 9	
Insulin High	
Glucose.Norm	
Cholesterol.Low	
statines.Low	
Patient 10	

Al in Medicine

- Artificial Intelligence in Medicine (AIM) one of the most important domains for human kind health
- Covers many research topics: text, image, temporal, and decision support
- In recent years with the breakthroughs in deep learning, there are tasks in medicine, such as image processing that benefited significantly. However, also longitudinal data, especially in Intense Care Units. AI was used in automating treatments, consisting on clinical guidelines, which were computerized.
- The speakers will cover ideally the following topics: Electronic Health Records Analytics Image Processing Longitudinal Data Analytics in medical data (outpatient, or inpatient data, or ICU).
 - Generative AI in Medicine.

Order of preference	Country	Full name	Institution	Email address	Research field	Expertise/reason for choice
1	Israel	Dr. Mor Peleg	Haifa University	peleg.mor@gmail.com	Al for medicine	Chief Editor, Journal of Biomedical Informatics
2	Israel	Dr. Erez Shmueli	Tel Aviv University	shmueli@tau.ac.il	Breathing Complications Diagnosis, BIG DATA in Medicine	Had made meaningful contributions in that field
3	Israel	Dr. Eran Segal	Weitzman Institute		Diabetes data analytics	Well known studies around the world
1	Japan	Dr. Takanori Hasegawa	M&D Data Science Center, Tokyo Medical and Dental University	tk.hasegawa@gmail.com https://www.hase62.jp/	bioinformatics	Human genome, transcriptome, epigenome, metagenome analysis, and clinical data for personalized and preventive medicine through modelling, prediction and inference
2	Japan	Dr. Shuhei Kurita	RIKEN-AIP	Shuhei.kurita@riken.jp https://shuheikurita.github.io/	Vision and Language	Vision and Language are two most important and popular fields in generative Al.
3	Japan	Dr. Ryoma Bise	Kyushu University	bise@ait.kyushu-u.ac.jp	Computer Vision for bioinformatics	 Pathological Image Segmentation/Classification, Cell Tracking Many papers published in top- tier conferences

Temporal Data Analytics

- While most of the works and methods developed in machine learning ignore time, dues to challenges and intention to simplify problems, longitudinal data is available more and more in recent years with the advancements of the Internet of Things.
- Thus, temporal data analytics is an important topic in many applicative domains, such as security in computers networks, intensive care unit and generally medicine, predictive maintenance and more.
- Other relevant tasks are forecasting in stocks, and other domains, in which sensory data are available. In recent decades there is a growing interest in discovery of frequent temporal patterns, such as sequential patterns, time intervals patterns and other, and their use for various tasks, such as classification, and more.

Order of preference	Country	Full name	Institution	Email address	Research field	Expertise/reason for choice
1	Israel	Mark Last	Ben Gurion University	mlast@bgu.ac.il	Data Mining	Had made several works in temporal data analysis
2	Israel	Assaf Shuster	Technion	assaf@cs.technion.ac.il	Data Mining	Is working in time series data
1	Japan	Koji Inoue	Kyoto University	Inoue.koji.3x@kyoto-ua.c.jp http://www.sap.ist.i.kyoto- u.ac.jp/members/inoue/	Spoken dialogue systems, Multimodal signal processing, Human-robot interaction	Highly evaluated young researcher in the field: http://www.sap.ist.i.kyoto- u.ac.jp/members/inoue/profile.html
2	Japan	Sho Yokoi	Tohoku University	yokoi@tohoku.ac.jp http://www.cl.ecei.tohoku.ac.jp/~yokoi/	Natural Language Processing	Active researcher who is also with RIKEN-AIP.